Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T04:12:36.337Z Has data issue: false hasContentIssue false

The drift velocity of water waves

Published online by Cambridge University Press:  20 April 2006

A. D. D. Craik
Affiliation:
Department of Applied Mathematics, University of St Andrews. St Andrews, Fife, KY16 9SS, Scotland

Abstract

The important role of viscosity in producing second-order Eulerian drift currents in the presence of small-amplitude water waves was first recognized by Longuet-Higgins (1953).

The theoretical and experimental background is first reviewed. It is then shown that, contrary to previous belief, the presence of surface contamination must greatly enhance the drift velocity of short waves. We then solve an initial-value problem for the drift current associated with temporally decaying waves, thereby resolving questions raised by the work of Liu & Davis (1977), whose solution exhibits anomalous singularities. Next, the steady drift velocity of spatially decaying waves is calculated and shown to bear a close resemblance to Longuet-Higgins’ ‘conduction solution’ for unattenuated waves.

Finally, we establish that unidirectional drift currents of both surface and inter-facial waves are sure to be unstable to spanwise-periodic disturbances; the instability mechanism being identical to that first proposed by Craik (1977), and recently developed by Leibovich & Paolucci (1981), to explain the generation of Langmuir circulations.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Collins, J. I. 1963 J. Geophys. Res. 68, 60076014.
Craik, A. D. D. 1977 J. Fluid Mech. 81, 209223.
Craik, A. D. D. & Leibovich, S. 1976 J. Fluid Mech. 73, 401426.
Dore, B. D. 1970 J. Fluid Mech. 40, 113126.
Dore, B. D. 1972 In Proc. I.U.T.A.M. Symp. on Unsteady Boundary Layers, Laval University Quebec, May 1971, vol. 2, pp. 15381583. Laval University Press.
Dore, B. D. 1977 Quart. J. Mech. Appl. Math. 30, 157173.
Dore, B. D. 1978a Geophys. Astrophys. Fluid Dyn. 10, 215230.
Dore, B. D. 1978b J. Engng Math. 12, 289301.
Dore, B. D. & Al-Zanaidi, M. A. 1979 Quart. Appl. Math. 37, 3550.
Faller, A. J. 1978 Science 201, 618620.
Faller, A. J. & Caponi, E. A. 1978 J. Geophys. Res. 83, 36173633.
Gottifredi, J. C. & Jameson, G. J. 1968 J. Fluid Mech. 32, 609618.
Grimshaw, R. 1981 J. Astr. Math. Soc. B (to appear).
Huang, N. E. 1970 J. Mar. Res. 28, 3550.
Knight, P. 1977 Mass transport in water waves. M.Sc. dissertation, University of Bristol.
Leibovich, S. 1980 J. Fluid Mech. 99, 715724.
Leibovich, S. & Paolucci, S. 1980 J. Phys. Oceanog. 10, 186207.
Leibovich, S. & Paolucci, S. 1981 J. Fluid Mech. 102, 141167.
Liu, A. K. & Davis, S. H. 1977 J. Fluid Mech. 81, 6384.
Longuet-Higgins, M. S. 1953 Phil. Trans. R. Soc. Lond. A 245, 535581.
Longuet-Higgins, M. S. 1960 J. Fluid Mech. 8, 293306.
Madsen, O. S. 1978 J. Phys. Oceanog. 8, 10091015.
Mei, C. C., Liu, P. L-.F. & Carter, T. G. 1972 Mass transport in water waves. Ralph M. Parsons Lab. Water Resources Hydrodynamics, M.I.T. Rep. no. 146.Google Scholar
Miles, J. W. 1967 Proc. R. Soc. Lond. A 297, 459475.
Phillips, O. M. 1977 Dynamics of the Upper Ocean, 2nd edn. Cambridge University Press.
Rayleigh, Lord 1896 The Theory of Sound, 2nd edn. Macmillan (reprinted Dover, 1945).
Russell, R. C. H. & Osorio, J. D. C. 1957 In Proc. 6th Conf. Coastal Engng, Miami, pp. 171193. Counc. Wave Res., University of California.
Smith, F. I. P. & Craik, A. D. D. 1971 J. Fluid Mech. 45, 527544.
Stokes, G. G. 1847 Trans. Camb. Phil. Soc. 8, 441455.
Thorpe, S. A. 1977 Phil. Trans. R. Soc. Lond. A 286, 125181.
Unlüata, U. & Mei, C. C. 1970 J. Geophys. Res. 75, 76117618.