Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T06:04:23.297Z Has data issue: false hasContentIssue false

Drainage flow of a viscous compressible fluid from a small capillary with a sealed end

Published online by Cambridge University Press:  02 February 2018

Kang Ping Chen*
Affiliation:
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287-6106, USA
Di Shen
Affiliation:
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287-6106, USA
*
Email address for correspondence: [email protected]

Abstract

Volumetric expansion driven drainage flow of a viscous compressible fluid from a small capillary with a sealed end is studied in the low Mach number limit using the linearized compressible Navier–Stokes equations with no-slip condition. Density relaxation, oscillation and decay as well as the velocity field are investigated in detail. It is shown that fluid drainage is controlled by the slow decay of the standing acoustic wave inside the capillary; and the acoustic wave retards the density diffusion by reducing the diffusion coefficient of the density envelope equation by one half. Remarkably the no-slip flow exhibits a slip-like mass flow rate. The period-averaged mass flow rate at the exit (drainage rate) is found proportional to the fluid’s kinematic viscosity via the density diffusion coefficient and the average drainage speed is independent of the capillary radius. These findings are valid for arbitrarily small capillaries as long as the continuum assumption holds and they are in stark contrast to the classical lubrication based theory. Generalization to a capillary with a sound absorbing end is achieved by a simple model. The reported results offer new insights to the nature of slow viscous compressible flows in very small capillaries.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amann-Hildenbrand, A., Ghanizadeh, A. & Krooss, B. M. 2012 Transport properties of unconventional gas systems. Mar. Petrol. Geol. 31, 9099.CrossRefGoogle Scholar
Aris, R. 1989 Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Dover.Google Scholar
Arkilic, E. B.1994 Gaseous flow in micron-sized channels. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
Arkilic, E. B., Schmidt, M. A. & Breuer, K. S. 1997a Gaseous slip flow in long microchannels. J. Microelectromech. Syst. 6 (2), 167178.Google Scholar
Arkilic, E. B., Schmidt, M. A. & Breuer, K. S. 1997b TMAC measurement in silicon micromachined channels. In Proceedings of 20th Symposium on Rarefied Gas Dynamics. Peking University Press.Google Scholar
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineer. McGraw-Hill.Google Scholar
van den Berg, H. R., Seldam, C. A. & van der Gulik, P. S. 1993 Compressible laminar flow in a capillary. J. Fluid Mech. 246, 120.CrossRefGoogle Scholar
Beskok, A. & Karniadakis, G. E. 1999 Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Therm. Engng 3, 4377.Google Scholar
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 2007 Transport Phenomena, revised 2nd edn. Wiley.Google Scholar
Brenner, H. 2005 Navier–Stokes revisited. Physica A 349, 60132.CrossRefGoogle Scholar
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids, 2nd edn. Oxford Science Publications.Google Scholar
Chakraborty, S. & Durst, F. 2007 Derivations of extended Navier–Stokes equations from upscaled molecular transport considerations for compressible ideal gas flows: towards extended constitutive forms. Phys. Fluids 19 (8), 088104.CrossRefGoogle Scholar
Chorin, A. J. & Marsden, J. E. 1992 A Mathematical Introduction to Fluid Mechanics. Springer.Google Scholar
Colin, S. 2005 Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid Nanofluid 1, 268279.Google Scholar
COMSOL 2016 COMSOL Multiphysics® Modeling Software, Burlington, MA, USA, www.comsol.com.Google Scholar
Curtis, M. E., Sondergeld, C. H., Ambrose, R. J. & Rai, C. S. 2012 Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. Bull. Am. Assoc. Petrol. Geol. 96, 665677.Google Scholar
Dadzie, S. K. & Brenner, H. 2012 Predicting enhanced mass flow rates in gas microchannels using nonkinetic models. Phys. Rev. E 86, 036318.CrossRefGoogle ScholarPubMed
Dongari, N. & Agrawal, A. 2007 Analytical solution of gaseous slip flow in long microchannels. Intl J. Heat Mass Transfer 50, 34113421.CrossRefGoogle Scholar
Dongari, N., Sharma, A. & Durst, F. 2009 Pressure-driven diffusive gas flows in micro-channels: from the Knudsen to the continuum regimes. Microfluid Nanofluid 6, 679692.Google Scholar
Durst, F., Gomes, J. & Sambasivam, R. 2006 Thermofluiddynamics: do we solve the right kind of equations. In Proceeding of the International Symposium on Turbulence, Heat and Mass Transfer, pp. 2529. Begell House.Google Scholar
Ewart, T. P., Perrier, P., Graur, I. A. & Meolans, J. G. 2006 Mass flow rate measurements in gas micro flows. Exp. Fluids 41, 487498.CrossRefGoogle Scholar
Ewart, T. P., Perrier, P., Graur, I. A. & Meolans, J. G. 2007a Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J. Fluid Mech. 584, 337356.Google Scholar
Ewart, T. P., Perrier, P., Graur, I. A. & Meolans, J. G. 2007b Tangential momentum accommodation in microtube. Microfluid Nanofluid 3, 689695.Google Scholar
Felderhof, B. U. 2010 Transient flow of a viscous compressible fluid in a circular tube after a sudden point impulse. J. Fluid Mech. 644, 97106.CrossRefGoogle Scholar
Friend, J. & Yeo, L. Y. 2011 Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83 (4), 647704.CrossRefGoogle Scholar
Frydel, D. & Diamant, H. 2012 Sound-mediated dynamic correlations between colloidal particles in a quasi-one-dimensional channel. Microparticles in Stokes Flows 2011, J. Phys.: Conf. Ser. 392, 012007.Google Scholar
Gad-el-Hak, M. 1999 The fluid mechanics of microdevices – the Freeman scholar lecture. ASME Trans. J. Fluids Engng 121, 533.Google Scholar
Gottlieb, M. & Bird, R. B. 1979 Exit effects in non-Newtonian liquids: an experimental study. Ind. Engng Chem. Fundam. 18 (4), 357368.Google Scholar
Gresho, P. M. 1991 Incompressible fluid dynamics: some fundamental formulation issues. Annu. Rev. Fluid Mech. 23, 413453.Google Scholar
Guo, Z. Y. & Wu, X. B. 1997 Compressibility effect on the gas flow and heat transfer in a microtube. Intl J. Heat Mass Transfer 40 (13), 32513254.Google Scholar
Hadjiconstantinou, N. G. 2003 Comment on Cercignani’s second-order slip coefficient. Phys. Fluids 15 (8), 23522354.Google Scholar
Hadjiconstantinou, N. G. 2006 The limits of Navier–Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics. Phys. Fluids 18, 111301.Google Scholar
Hagen, M. H. J., Pagonabarraga, I., Lowe, C. P. & Frenkel, D. 1997 Algebraic decay of velocity fluctuations in a confined fluid. Phys. Rev. Lett. 78 (19), 37853788.CrossRefGoogle Scholar
Harley, C., Huang, Y. H., Bau, H. & Zemel, J. N. 1995 Gas flow in microchannels. J. Fluid Mech. 284, 257274.Google Scholar
Ho, C. M. & Tai, Y. C. 1998 Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30, 579612.Google Scholar
Hong, C., Asako, Y. & Lee, J. 2008 Poiseuille number correlation for high speed micro-flows. J. Phys. D: Appl. Phys. 41, 105111.Google Scholar
Hultmark, M., Aristoff, J. M. & Stone, H. A. 2011 The influence of the gas phase on liquid imbibition in capillary tubes. J. Fluid Mech. 678, 600606.Google Scholar
Jain, V. & Lin, C. X. 2006 Numerical modeling of three-dimensional compressible gas flow in microchannels. J. Micromech. Microengng 16, 292302.Google Scholar
Jaishankar, A. & McKinley, G. H. 2014 An analytical solution to the extended Navier–Stokes equations using the Lambert W function. AIChE J. 60 (4), 14131423.Google Scholar
Jang, J., Zhao, Y., Wereley, S. T. & Gui, L. 2002 Mass flow measurement of gases in deep-RIE microchannels. In Proceedings of IMECE2002 ASME International Mechanical Engineering Congress and Exposition, pp. 1722. ASME.Google Scholar
Karniadakis, G., Beskok, A. & Aluru, N. 2005 Microflows and Nanoflows: Fundamentals and Simulation. Springer.Google Scholar
Knudsen, M. 1909 Die Gesetze der Molekularstroemung und der inneren Reibungsstroemung der Gase durch Roehren. Ann. Phys. 333, 75130.Google Scholar
Leal, L. G. 2010 Advanced Transport Phenomena. Cambridge University Press.Google Scholar
Maurer, J., Tabeling, P., Joseph, P. & Willaime, H. 2003 Second-order slip laws in microchannels for helium and nitrogen. Phys. Fluids 15, 26132621.Google Scholar
Maxwell, J. C. 1879 On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. 170, 231256.Google Scholar
Monkewitz, P. A. 1979 The linearized treatment of forced gas oscillations in tubes. J. Fluid Mech. 91, 357397.Google Scholar
Morse, P. M. & Ingard, K. U. 1968 Theoretical Acoustics. McGraw-Hill.Google Scholar
Panton, R. L. 2013 Incompressible Flow, 4th edn. Wiley.Google Scholar
Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104129.Google Scholar
Prud’homme, R. K., Chapman, T. W. & Bowen, J. R. 1986 Laminar compressible flow in a tube. Appl. Sci. Res. 43, 6774.CrossRefGoogle Scholar
Rassenfoss, S. 2015 Unconventional rock defies old rules, but new rules are far from being ready. J. Petrol. Tech. 67 (9), 6466.Google Scholar
Sani, R. L. & Gresho, P. M. 1994 Resume and remarks on the open boundary condition minisymposium. Intl J. Numer. Meth. Fluids 18, 9831008.Google Scholar
Scarton, H. A. & Rouleau, W. T. 1973 Axisymmetric waves in compressible Newtonian liquids contained in rigid tubes: steady-periodic mode shapes and dispersion by the method of eigenvalleys. J. Fluid Mech. 58, 595621.Google Scholar
Schwartz, L. W. 1987 A perturbation solution for compressible viscous channel flow. J. Engng Maths 21, 6986.Google Scholar
Shapiro, A. H. 1953 The Dynamics and Thermodynamics of Compressible Fluid Flow, vols. 1 & 2. Wiley & Sons.Google Scholar
Shih, J., Ho, C., Liu, J. & Tai, Y. 1996 Monoatomic and polyatomic gas flow through uniform microchannels. In Application of Microfabrication to Fluid Mechanics, ASME Winter Annual Meeting, pp. 197203. ASME.Google Scholar
Squires, T. M. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77 (7), 9771026.Google Scholar
Stone, H. A. & Kim, S. 2001 Microfluidics: basic issues, applications, and challenges. AIChE J. 47, 12501254.Google Scholar
Taliadorou, E. G., Neophytou, M. & Georgiou, G. C. 2009 Perturbation solutions of Poiseuille flows of weakly compressible Newtonian liquids. J. Non-Newtonian Fluid Mech. 163, 2534.Google Scholar
Temkin, S. 1981 Elements of Acoustics. John Wiley & Sons.Google Scholar
Tsien, H.-S. 1946 Superaerodynamics, mechanics of rarefied gases. J. Aeronaut. Sci. 13, 653664.Google Scholar
Venerus, D. C. & Bugajsky, D. J. 2010 Compressible laminar flow in a channel. Phys. Fluids 22, 046101.Google Scholar
Venerus, D. C. 2006 Laminar capillary flow of compressible viscous fluids. J. Fluid Mech. 555, 5980.Google Scholar
Veltzke, T. & Thaming, J. 2012 An analytically predictive model for moderately rarefied gas flow. J. Fluid Mech. 698, 406422.Google Scholar
Wu, L. 2008 A slip model for rarefied gas flows at arbitrary Knudsen number. Appl. Phys. Lett. 93 (25), 253103.Google Scholar
Yamaguchi, H., Hanawa, T., Yamamoto, O., Matsuda, Y., Egami, Y. & Niimi, T. 2011 Experimental measurement on tangential momentum accommodation coefficient in a single microtube. Microfluid Nanofluid 11, 5764.Google Scholar
Yuan, J. & Chen, K. P. 2016 Choked gas flow at pore-scale and its implications to production from high-pressure gas wells. Trans. ASME J. Fluids Engng 138, 014501.Google Scholar
Zhang, W. M., Meng, G. & Wei, X. 2012 A review on slip models for gas microflows. Microfluid Nanofluid 13 (6), 845882.CrossRefGoogle Scholar
Zohar, Y., Lee, S. Y. K., Lee, W. Y., Jiang, L. & Tong, P. 2002 Subsonic gas flow in a straight and uniform microchannel. J. Fluid Mech. 427, 125151.Google Scholar