Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-21T23:39:18.664Z Has data issue: false hasContentIssue false

Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions

Published online by Cambridge University Press:  26 April 2006

H. Deyhle
Affiliation:
Deutsche Forschungsanstalt für Luft- und Raumfahrt, Institut für Strömungsmechanik, Bunsenstr. 10, D-37073 Göttingen, Germany Present address: Deutsche Forschungsanstalt für Luft- und Raumfahrt, Institut für Aeroelastik, Bunsenstr. 10, D-37073 Göttingen, Germany.
H. Bippes
Affiliation:
Deutsche Forschungsanstalt für Luft- und Raumfahrt, Institut für Strömungsmechanik, Bunsenstr. 10, D-37073 Göttingen, Germany

Abstract

Experimental investigations in the three-dimensional boundary layer of a swept flat plate with the pressure gradient induced from outside are aimed at enhancing knowledge of the transition process in the presence of pure crossflow instability. The development of disturbances is characterized by the occurrence of both stationary and travelling instability modes, by early nonlinear development and by complex dependence upon the environmental conditions. Experiments under natural conditions of transition showed a good correspondence of the identified modes with those predicted by local linear stability theory. The disturbance growth, however, is generally overpredicted. Controlled excitation of crossflow vortices allowing measurements closer to the linear range of amplification confirmed this result. Nonlinear effects such as interaction between stationary disturbances and base flow and between travelling and stationary modes have already been observed when the naturally excited instabilities become of measurable size.

The most striking feature of the disturbance development is the complex dependence on initial conditions. Experiments under systematically varied environments showed that surface roughness represents the key parameter responsible for the initiation of stationary crossflow vortices. In contrast to two-dimensional boundary layers, free-stream turbulence influences the transition process indirectly. Only for turbulence levels Tu > 0.2% and smooth surfaces do the travelling instability waves dominate. The location of the final breakdown of laminar flow is clearly determined by the saturation amplitude of crossflow vortices. The receptivity to sound, two-dimensional surface roughness and non-uniformities of the test-section mean flow was found to be very weak.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnal, D., Coustols, E. & Juillen, J. C. 1984 Experimental and theoretical study of transition phenomena on an infinite swept wing. Rech. Aerosp. No. 1984-4.
Bertolotti, F. P. 1994 A partial simulation of receptivity and transition in 3-D boundary layers. IUTAM Symposium on Laminar-Turbulent Transition, Sendai (Japan), Sept. 5–9.
Bertolotti, F. P. & Bippes, H. 1994 An experimental and computational investigation of transition in a subsonic three-dimensional boundary layer. Proc. DGLR Jahrestagung, Erlangen, Germany.
Bertolotti, F. P. & Crouch, J. D. 1992 Simulation of boundary-layer transition: receptivity to spike stage. Proc. 1st Euro. Comput. Fluid Dyn. Conf. Elsevier.
Bippes, H. 1972 Experimentelle Untersuchung des laminar-turbulenten Umschlags an einer parallel angeströmten konkaven Wand. Heidelb. Akad. Wiss., Math. Naturwiss. Kl., Sitzungsber. 3, 103180.Google Scholar
Bippes, H. 1991 Experiments on Transition in Three-Dimensional Accelerated Boundary-Layer Flows. Proc. R.A.S. Conf. on Boundary-Layer Transition and Control, Cambridge, UK.
Bippes, H., Müller, B. & Wagner, M. 1991 Measurements and stability calculations of the disturbance growth in an unstable three-dimensional boundary layer. Phys. Fluids A 3, 23712377.Google Scholar
Bippes, H. & Nitschke-Kowsky, P. 1990 Experimental study of instability modes in a three-dimensional boundary layer. AIAA J. 28, 17581763.Google Scholar
Böttcher, J. & Wedemeyer, E. 1989 The flow downstream of screens and its influence on the flow in the stagnation region of cylindrical bodies. J. Fluid Mech. 204, 501522.Google Scholar
Corke, T. C. & Mangano, R. A. 1989 Resonant growth of three-dimensional modes in transitioning boundary layers. J. Fluid Mech. 209, 93150.Google Scholar
Deyhle, H. 1993 Einfluß der äußeren Strömungsbedingungen auf den Transitionsprozeß einer dreidimensionalen Grenzschicht. Dissertation zum Dr.-Ing. an der TH Hannover, Mai 1993; published in VDI Fortschritt-Bericht Reihe 7, no 226. VDI-Verlag Düsseldorf (Germany).
Deyhle, H., Höhler, G. & Bippes, H. 1993 Experimental investigation of instability wave propagation in a 3-D boundary-layer flow. AIAA J. 31, 637645.Google Scholar
Fischer, T. M. & Dallmann, U. 1991 Primary and secondary stability analysis of a three-dimensional boundary-layer flow. Phys. Fluids A 3, 23782391.Google Scholar
Fischer, T. M., Hein, S. & Dallmann, U. 1993 A theoretical approach for describing secondary instability features in three-dimensional boundary-layer flows. AIAA Paper 93-0080.
Gaponenko, V. R., Ivanov, A. V. & Kachanov, Y. S. 1994 Experimental study of crossflow instability of a swept wing boundary layer with respect to travelling waves. IUTAM Symp. on Laminar-Turbulent Transition, Sendai (Japan), Sept. 5–9.
Goldstein, M. E. & Hultgren, L. S. 1989 Boundary-layer receptivity to long-wave free-stream disturbances. Ann. Rev. Fluid Mech. 21, 137166.Google Scholar
Hall, P. 1983 The linear development of Görtler vortices in boundary layers. J. Fluid Mech. 130, 4157.Google Scholar
Kachanov, Y. S. & Tararykin, O. I. 1989 The experimental investigation of stability and receptivity of a swept-wing flow. In Laminar-Turbulent Transition, IUTAM Symp., Toulouse, France, 1989 (ed. D. Arnal & R. Michel), pp. 499509. Springer.
King, R. A. 1992 Three-dimensional boundary-layer transition on a cone at Mach 3.5. Exps. Fluids 13, 305314.Google Scholar
Koch, W. 1992 On a degeneracy of temporal secondary instability modes in Blasius boundary-layer flow. J. Fluid Mech. 243, 319351.Google Scholar
Kohama, Y., Saric, W. S. & Hoos, J. A. 1991 A high-frequency, secondary instability of crossflow vortices that leads to transition. Proc. R.A.S. Conf. on Boundary-Layer Transition and Control, Cambridge, UK, pp. 4.14.13.
Kosorygin, V. S., Levchenko, V. Y. & Polyakov, N. P. 1984 On generation and evolution of waves in a laminar boundary layer. In Laminar-Turbulent Transition, IUTAM Symp., Novosibirsk, USSR, 1984 (ed. V. V. Kozlov), pp. 233242. Springer.
Leehey, P., Gedney, C. J. & Her, J. Y. 1984 The receptivity of a laminar boundary layer to external disturbances. In Laminar-Turbulent Transition, IUTAM Symp., Novosibirsk, USSR, 1984 (ed. V. V. Kozlov), pp. 283294. Springer.
Lerche, T. & Bippes, H. 1995 Experimental investigation of crossflow instability under the influence of controlled disturbance generation. Colloq. Royal Netherlands Academy of Arts and Sciences on Transitional Boundary Layers in Aeronautics, Amsterdam (Netherlands), December 6–8 (Conf. Proc.).
Liepmann, H. W., Brown, G. L. & Nosenchuck, D. M. 1982 Control of laminar instability waves using a new technique. J. Fluid Mech. 118, 187200.Google Scholar
Malik, M. R., Li, F. & Chang, C.-L. 1994 Cross-flow disturbances in three-dimensional boundary layers: non-linear development, wave interaction and secondary instability. J. Fluid Mech. 268, 136.Google Scholar
Meyer, F. 1989 Numerische Simulation der Transition in dreidimensionalen Grenzschichten. Dissertation zum Dr. Ing. an der Universität Fridericiana zu Karlsruhe (also DLR-FB 89–12).
Meyer, F. & Kleiser, L. 1989 Numerical simulation of transition due to cross-flow instability. In Laminar-Turbulent Transition, IUTAM Symp., Toulouse, France, 1989 (ed. D. Arnal & R. Michel), pp. 609619. Springer.
Morkovin, M. V. & Reshotko, E. 1989 Dialogue on progress and issues in stability and transition research. In Laminar-Turbulent Transition, IUTAM Symp., Toulouse, France, 1989 (ed. D. Arnal & R. Michel), pp. 329. Springer.
Müller, B. 1989 Experimental study of travelling waves in a three-dimensional boundary layer. In Laminar-Turbulent Transition, IUTAM Symp., Toulouse, France, 1989 (ed. D. Arnal & R. Michel), pp. 489498. Springer.
Müller, B. 1990 Experimented Untersuchung der Querströmungsinstabilität im linearen und nichtlinearen Bereich des Transitionsgebietes. Dissertation zum Dr.-Ing. an der Universität Fridericiana zu Karlsruhe (also DLR-FB 90-09, 1990).
Müller, B. & Bippes, H. 1988 Experimental study of instability modes in a three-dimensional boundary layer. Proc. AGARD Symp. on Fluid Dynamics of Three-Dimensional Turbulent Shear Flows and Transition, Cesme (Turkey), AGARD CP-438, pp. 13-113-15.
Müller, W. 1995 Numerische Untersuchung räumlicher Umschlagsvorgänge in dreidimensionalen Grenzschichtströmungen. Dissertation zum Dr.-Ing. an der Universität Stuttgart.
Müller, W., Bestek, H. & Fasel, H. 1994 Spatial direct simulation of transition in a three-dimensional boundary layer. In IUTAM Symposium on Laminar-Turbulent Transition, Sendai (Japan), Sept. 5–9.
Nitschke-Kowsky, P. & Bippes, H. 1988 Instability and transition of a three-dimensional boundary layer on a swept flat plate. Phys. Fluids 31, 786795.Google Scholar
Pfenninger, W. & Bacon, J. W. 1969 Amplified laminar boundary-layer oscillations and transition at the front attachment line of a 45° swept flat-nosed wing with and without boundary-layer suction. In Viscous Drag Reduction (ed. C. S. Well). Plenum.
Poll, D. I. A. 1985 Some observations of the transition process on the windward face of a long yawed cylinder. J. Fluid Mech. 150, 329356.Google Scholar
Radeztsky, R. H. Jr, Reibert, M. S. & Saric, W. S. 1994 Development of stationary crossflow vortices on a swept wing. AIAA Paper 94-2373.
Radeztsky, R. H. Jr, Reibert, M. S., Saric, W. S. & Takagi, S. 1993 Effect of micron-sized roughness on transition in swept-wing flows. AIAA Paper 93-0076.
Reed, H. L. & Saric, W. S. 1989 Stability of three-dimensional boundary layers. Ann. Rev. Fluid Mech. 21, 235284.Google Scholar
Saric, W. S. 1992 Laminar-Turbulent Transition: Fundamentals. AGARD Rep. 786, Special Course on Skin Friction Drag Reduction, VKI, pp. 4-14-32.
Saric, W. S. 1994 Low speed boundary-layer transition experiments. In Transition: Experiments, Theory and Computations (ed. T. C. Corke, G. Erlebacher & M. Y. Hussaini) Oxford University Press.
Schubauer, G. B. & Skramstad, H. K. 1948 Laminary boundary-layer oscillations and transition on a flat plate. NACA Rep. 909.
Swearingen, J. D. & Blackwelder, R. F. 1986 Spacing of streamwise vortices on concave walls. AIAA J. 24, 17061709.Google Scholar
Takagi, S. & Itoh, N. 1994 Observation of travelling waves in a three-dimensional boundary layer along a yawed cylinder. Fluid Dyn. Res. 14, 167189.Google Scholar
Takagi, S., Saric, W. S., Radeztsky, R. H., Spencer, S. A. & Orr, D. J. 1991 Effect of sound and micron-sized roughness on crossflow dominated transition. Bull. Am. Phys. Soc., 36, 2630.Google Scholar
Wagner, M. 1992 Numerische Untersuchungen zum laminar-turbulenten Übergang in zwei- und dreidimensionalen Grenzschichten. Dissertation zum Dr. Ing. an der Universität Fridericiana zu Karlsruhe (also DLR-FB 92–36).