Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T06:49:07.504Z Has data issue: false hasContentIssue false

Dissipation element analysis of non-premixed jet flames

Published online by Cambridge University Press:  20 October 2020

D. Denker*
Affiliation:
Institute for Combustion Technology, RWTH Aachen University, Templergraben 64, Aachen52062, Germany
A. Attili
Affiliation:
Institute for Combustion Technology, RWTH Aachen University, Templergraben 64, Aachen52062, Germany
J. Boschung
Affiliation:
Institute for Combustion Technology, RWTH Aachen University, Templergraben 64, Aachen52062, Germany
F. Hennig
Affiliation:
Institute for Combustion Technology, RWTH Aachen University, Templergraben 64, Aachen52062, Germany
M. Gauding
Affiliation:
CORIA – CNRS UMR 6614, Saint Etienne du Rouvray, France
M. Bode
Affiliation:
Institute for Combustion Technology, RWTH Aachen University, Templergraben 64, Aachen52062, Germany
H. Pitsch
Affiliation:
Institute for Combustion Technology, RWTH Aachen University, Templergraben 64, Aachen52062, Germany
*
Email address for correspondence: [email protected]

Abstract

The dissipation element analysis is applied to the mixture fraction fields of a series of datasets from direct numerical simulations of non-premixed temporally evolving jet flames with jet Reynolds numbers ranging from 4500 to 10 000 and varying stoichiometric mixture fractions. Dissipation elements are space-filling regions where a scalar field behaves monotonically and allow for the analysis of scalar fields in homogeneous isotopic turbulence as well as in complex, highly inhomogeneous and anisotropic flows such as turbulent flames. Statistics of the dissipation element parameters of non-premixed flames are compared to those obtained from non-reacting jets. It is found that the universality of the normalized length distribution of the dissipation elements observed in non-reacting cases also holds true for the reacting flows. The characteristic scaling with the Kolmogorov micro-scale $\eta$ is obtained as well. The effects of combustion on the scalar difference in the dissipation elements are shown and are found to diminish as the Reynolds number and the fuel dilution is increased. The dissipation elements provide the means for a local comparison of the turbulent and characteristic flame scales. A new regime diagram for non-premixed combustion is introduced using coherent structures in the scalar fields, the dissipation element parameters for a local classification of the turbulent flame surface into flamelet-like zones and fine-scale mixing zones in addition to the burning and non-burning zones. The soundness of the regime diagram and the potential consequences for combustion modelling in the individual regimes is demonstrated by the investigation of the correlation between the chemical field and the dissipation element parameters in the individual regimes.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonia, R. A. & Sreenivasan, K. R. 1977 Log-normality of temperature dissipation in a turbulent boundary layer. Phys. Fluids 20, 18001804.CrossRefGoogle Scholar
Attili, A. & Bisetti, F. 2013 Fluctuations of a passive scalar in a turbulent mixing layer. Phys. Rev. E 88 (3), 033013.CrossRefGoogle Scholar
Attili, A. & Bisetti, F. 2019 Statistics of scalar dissipation and strain/vorticity/scalar gradient alignment in turbulent nonpremixed jet flames. Flow Turbul. Combust. 103 (3), 625642.CrossRefGoogle Scholar
Attili, A., Bisetti, F., Mueller, M. & Pitsch, H. 2016 Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames. Combust. Flame 166, 192202.CrossRefGoogle Scholar
Attili, A., Bisetti, F., Mueller, M. E. & Pitsch, H. 2014 Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Combust. Flame 161, 18491865.CrossRefGoogle Scholar
Attili, A., Bisetti, F., Mueller, M. E. & Pitsch, H. 2015 Damköhler number effects on soot formation and growth in turbulent nonpremixed flames. Proc. Combust. Inst. 35, 12151223.CrossRefGoogle Scholar
Bilger, R. W., Pope, S. B., Bray, K. N. C. & Driscoll, J. F. 2005 Paradigms in turbulent combustion research. Proc. Combust. Inst. 30, 2142.CrossRefGoogle Scholar
Bisset, D. K., Hunt, J. C. R. & Rogers, M. M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.CrossRefGoogle Scholar
Celani, A., Cencini, M., Vergassola, M., Villermaux, E. & Vincenzi, D. 2005 Shear effects on passive scalar spectra. J. Fluid Mech. 523, 99108.CrossRefGoogle Scholar
Cook, A, Cabot, W. & Miller, P. 2004 The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech. 511, 333362.CrossRefGoogle Scholar
Denker, D., Attili, A., Luca, S., Gauding, M., Bisetti, F. & Pitsch, H. 2019 Dissipation element analysis of premixed jet flames. Combust. Sci. Technol. 191, 116.CrossRefGoogle Scholar
Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H. 2008 High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227, 71257159.CrossRefGoogle Scholar
Falgout, R. D., Jones, J. E. & Yang, U. M. 2005 Pursuing scalability for hypre's conceptual interfaces. ACM Trans. Math. Softw. 31, 326–350.CrossRefGoogle Scholar
Favier, V. & Vervisch, L. 2001 Edge flames and partially premixed combustion in diffusion flame quenching. Combust. Flame 125, 788803.CrossRefGoogle Scholar
Gampert, M., Goebbert, J. H., Schaefer, P., Gauding, M., Peters, N., Aldudak, F. & Oberlack, M. 2011 Extensive strain along gradient trajectories in the turbulent kinetic energy field. New J. Phys. 13, 043012.CrossRefGoogle Scholar
Gampert, M., Schaefer, P., Goebbert, J. H. & Peters, N. 2013 a Decomposition of the field of the turbulent kinetic energy into regions of compressive and extensive strain. Phys. Scr. 155, 014002.CrossRefGoogle Scholar
Gampert, M., Schaefer, P., Goebbert, J. H., Wang, L. & Peters, N. 2010 Testing of model equations for the mean dissipation using Kolmogorov flows. Flow Turbul. Combust. 85, 225243.Google Scholar
Gampert, M., Schaefer, P. & Peters, N. 2013 b Experimental investigation of dissipation-element statistics in scalar fields in a jet flow. J. Fluid Mech. 724, 337366.CrossRefGoogle Scholar
Gauding, M., Dietzsch, F., Goebbert, J. H., Thévenin, D., Abdelsamie, A. & Hasse, C 2017 Dissipation element analysis of a turbulent non-premixed jet flame. Phys. Fluids 29, 085103.CrossRefGoogle Scholar
Göbbert, J. H., Iliev, H., Ansorge, C. & Pitsch, H. 2017 Overlapping of communication and computation in nb3dfft for 3D fast Fourier transformations. In High-Performance Scientific Computing (ed. Di Napoli, E., Hermanns, M.-A., Iliev, H., Lintermann, A. & Peyser, A.), pp. 151159. Springer International Publishing.CrossRefGoogle Scholar
Hawkes, E. R., Sankaran, R., Sutherland, J. C. & Chen, J. H. 2007 Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal $\textrm {CO}/\textrm {H}_2$ kinetics. Proc. Combust. Inst. 31, 16331640.CrossRefGoogle Scholar
Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E. & Woodward, C. S. 2005 SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31 (3), 363396.CrossRefGoogle Scholar
Holzer, M. & Siggia, E. D. 1994 Turbulent mixing of a passive scalar. Phys. Fluids 6, 18201837.CrossRefGoogle Scholar
Hunger, F., Gauding, M. & Hasse, C 2016 On the impact of the turbulent/non-turbulent interface on differential diffusion in a turbulent jet flow. J. Fluid Mech. 802, R5.CrossRefGoogle Scholar
Jiang, G. S. & Shu, C. W 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202228.CrossRefGoogle Scholar
Lavoie, G. A., Heywood, J. B. & Keck, J. C. 1970 Experimental and theoretical study of nitric oxide formation in internal combustion engines. Combust. Sci. Technol. 1.CrossRefGoogle Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. Phys. Fluids 103, 1642.Google Scholar
Lignell, D. O., Chen, J. H. & Schmutz, H. A. 2011 Effects of Damköhler number on flame extinction and reignition in turbulent non-premixed flames using DNS. Combust. Flame 158 (5), 949963.CrossRefGoogle Scholar
Lu, Z. & Ghosal, S. 2004 Flame holes and flame disks on the surface of a diffusion flame. J. Fluid Mech. 513, 287–307.CrossRefGoogle Scholar
Luca, S., Attili, A., Lo Schiavo, E., Creta, F. & Bisetti, F. 2019 On the statistics of flame stretch in turbulent premixed jet flames in the thin reaction zone regime at varying Reynolds number. Proc. Combust. Inst. 37 (2), 2451–2459.CrossRefGoogle Scholar
Ol'shanskii, M. A. & Staroverov, V. M. 2000 On simulation of outflow boundary conditions in finite difference calculations for incompressible fluid. Intl J. Numer. Meth. Fluids 33, 499–534.3.0.CO;2-7>CrossRefGoogle Scholar
Pantano, C. & Pullin, D. I. 2004 A statistical description of turbulent diffusion flame holes. Combust. Flame 137, 295–305.CrossRefGoogle Scholar
Peters, N. 1984 Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319339.CrossRefGoogle Scholar
Peters, N. 2009 Multiscale combustion and turbulence. Proc. Combust. Inst. 32, 125.CrossRefGoogle Scholar
Peters, N. 2010 Combustion Theory. CEFRC Summer School Princeton.Google Scholar
Peters, N. 2012 Turbulence statistics along gradient trajectories. Z. Angew. Math. Mech. 92, 47.CrossRefGoogle Scholar
Peters, N., Paczko, G., Seiser, R. & Seshadri, K. 2002 Temperature cross-over and non-thermal runaway at two-slage ignition at n-heplane. Combust. Flame 128, 3859.CrossRefGoogle Scholar
Pitsch, H. & Peters, N. 1998 A consistent flamelet formulation for nonpremixed combustion considering differential diffusion effects. Combust. Flame 114, 2640.CrossRefGoogle Scholar
Pope, S. B. 2013 Small scales, many species and the manifold challenges of turbulent combustion. Proc. Combust. Inst. 34, 131.CrossRefGoogle Scholar
Schnorr, A., Helmrich, D., Denker, D., Kuhlen, T. & Hentschel, B. 2020 Feature tracking by two-step optimization. IEEE Trans. Vis. Comput. Graphics 26 (6), 2219–2233.CrossRefGoogle ScholarPubMed
Sripakagorn, P., Mitarai, S., Kosaly, G. & Pitsch, H 2004 Extinction and reignition in a diffusion flame (a direct numerical simulation study). J. Fluid Mech. 518, 231259.CrossRefGoogle Scholar
Stanley, S., Sarkar, S. & Mellardo, J. P 2002 A study of the flowfield evolution and mixing in a planar turbulent jet using direct numerical simulation. J. Fluid Mech. 450, 377407.CrossRefGoogle Scholar
Strang, G. 1968 On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506517.CrossRefGoogle Scholar
Taveira, R. R. & da Silva, C. B. 2013 Kinetic energy budgets near the turbulent/nonturbulent interface in jets. Phys. Fluids 25, 015114.CrossRefGoogle Scholar
Wang, L. 2009 Structure function of two-point velocity difference along scalar gradient trajectories in fluid turbulence. Phys. Rev. E 79, 046325.CrossRefGoogle Scholar
Wang, L. & Peters, N. 2006 The length scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech. 554, 457475.CrossRefGoogle Scholar
Wang, L. & Peters, N. 2008 The length scale distribution functions and conditional means for various fields in turbulence. J. Fluid Mech. 608, 113138.CrossRefGoogle Scholar
Wang, L. & Peters, N. 2013 A new view of flow topology and conditional statistics in turbulence. Phil. Trans. R. Soc. A 371, 20120169.CrossRefGoogle ScholarPubMed