Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T13:44:30.335Z Has data issue: false hasContentIssue false

Disrupt the upper or the lower conduit? The dual role of gas exsolution in the conduits of persistently active volcanoes

Published online by Cambridge University Press:  23 May 2022

Shirui Peng*
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91106, USA
Davide Picchi
Affiliation:
Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Brescia 25123, Italy
Jenny Suckale
Affiliation:
Department of Geophysics, Stanford University, Stanford, CA 94305, USA Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
*
Email address for correspondence: [email protected]

Abstract

Many volcanoes emit a significant portion of the gas they transport to the atmosphere during continual passive degassing rather than during eruptions. To maintain a high gas and thermal flux without erupting magma, the flow field in the volcanic conduit must be approximately balanced with gas-rich, buoyant magma ascending and degassed, heavy magma descending. In vertical conduits, this exchange flow takes the form of core–annular flow, where the gas-rich magma forms a core enclosed by an annulus of degassed magma. The flow dynamics of core–annular flow have been studied extensively in fluid dynamics, but mostly for constant material properties. Our study aims to advance our understanding of how core–annular flow responds to volatile exsolution – a simple, yet ubiquitous disruption in volcanic conduits, which alters both the density and the viscosity of the core fluid. By deriving an evolution equation for the core–annular interface based on a generalized exchange-flow condition using a lubrication approximation, we find that the response of the system to volatile exsolution depends on the conduit flow regime. The same nucleation event can lead to a flow adjustment only in the upper, only in the lower or in both portions of the volcanic conduit. Our results emphasize that the thermodynamic evolution of magma properties and volcanic conduit flow are intricately linked, which may help understand the observed variability of eruptive behaviour at persistently degassing volcanoes.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aiuppa, A., Moretti, R., Federico, C., Giudice, G., Gurrieri, S., Liuzzo, M., Papale, P., Shinohara, H. & Valenza, M. 2007 Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35 (12), 11151118.CrossRefGoogle Scholar
Allard, P., Carbonnelle, J., Métrich, N., Loyer, H. & Zettwoog, P. 1994 Sulphur output and magma degassing budget of Stromboli volcano. Nature 47, 326330.CrossRefGoogle Scholar
Andronico, D., et al. 2021 Uncovering the eruptive patterns of the 2019 double paroxysm eruption crisis of Stromboli volcano. Nat. Commun. 12 (1), 4213.CrossRefGoogle ScholarPubMed
Applegarth, L.J., Tuffen, H., James, M.R. & Pinkerton, H. 2013 Degassing-driven crystallisation in basalts. Earth Sci. Rev. 116, 116.CrossRefGoogle Scholar
Beckett, F.M., Mader, H.M., Phillips, J.C., Rust, A.C. & Witham, F. 2011 An experimental study of low-Reynolds-number exchange flow of two Newtonian fluids in a vertical pipe. J. Fluid Mech. 682 (2011), 652670.CrossRefGoogle Scholar
Brauner, N. 1998 Liquid-liquid two-phase flow systems. In Modeling and Experimentation in Two-Phase Flow (ed. V. Bertola), pp. 221–279. Springer.CrossRefGoogle Scholar
Bresch, D. & Desjardins, B. 2006 On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier–Stokes models. J. Math. Pures Appl. 86 (4), 362368.CrossRefGoogle Scholar
Burton, M.R., Oppenheimer, C., Horrocks, L.A. & Francis, P.W. 2000 Remote sensing of CO$_2$ and H$_2$O emission rates from Masaya volcano, Nicaragua. Geology 28 (10), 915918.2.0.CO;2>CrossRefGoogle Scholar
Cervelli, P.F. & Miklius, A. 2003 The shallow magmatic system of Kılauea Volcano. In The Pu‘u ‘O‘o-Kupaianaha Eruption of Kilauea Volcano, Hawai‘i: The First 20 Years (ed. C. Heliker, D.A. Swanson & T.J. Takahashi), vol. 1676, pp. 149–163. US Geol. Surv. Prof. Pap.Google Scholar
Connolly, J.A.D. 2005 Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci. Lett. 236 (1–2), 524541.CrossRefGoogle Scholar
Cook, B.P., Bertozzi, A.L. & Hosoi, A.E. 2008 Shock solutions for particle-laden thin films. SIAM J. Appl. Maths 68 (3), 760783.CrossRefGoogle Scholar
Dauck, T.-F., Box, F., Gell, L., Neufeld, J.A. & Lister, J.R. 2019 Shock formation in two-layer equal-density viscous gravity currents. J. Fluid Mech. 863, 730756.CrossRefGoogle Scholar
DiBenedetto, M., Qin, Z. & Suckale, J. 2020 Crystal aggregates record the pre-eruptive flow field in the volcanic conduit at Kılauea, Hawaii. Sci. Adv. 6 (49), eabd4850.CrossRefGoogle Scholar
Dixon, J.E. 1997 Degassing of alkalic basalts. Am. Mineral. 82 (3–4), 368378.CrossRefGoogle Scholar
Dixon, J.E., Clague, D.A. & Stolper, E.M. 1991 Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii. J. Geol. 99 (3), 371394.CrossRefGoogle Scholar
Dixon, J.E., Stolper, E.M. & Holloway, J.R. 1995 An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J. Petrol. 36 (6), 16071631.Google Scholar
Eaton, J.P., Richter, D.H. & Krivoy, H.L. 1987 Cycling of magma between the summit reservoir and Kilauea Iki lava lake during the 1959 eruption of Kilauea volcano. US Geol. Surv. Prof. Pap. 1350, 13071335.Google Scholar
Ferlito, C., Viccaro, M. & Cristofolini, R. 2009 Volatile-rich magma injection into the feeding system during the 2001 eruption of Mt. Etna (Italy): its role on explosive activity and change in rheology of lavas. Bull. Volcanol. 71 (10), 11491158.CrossRefGoogle Scholar
Firth, C.W., Handley, H.K., Cronin, S.J. & Turner, S.P. 2014 The eruptive history and chemical stratigraphy of a post-caldera, steady-state volcano: Yasur, Vanuatu. Bull. Volcanol. 76 (7), 837.CrossRefGoogle Scholar
Fischer, T.P., Roggensack, K. & Kyle, P.R. 2002 Open and almost shut case for explosive eruptions: vent processes determined by SO$_2$ emission rates at Karymsky volcano, Kamchatka. Geology 30 (12), 10591062.2.0.CO;2>CrossRefGoogle Scholar
Fowler, A.C. & Robinson, M. 2018 Counter-current convection in a volcanic conduit. J. Volcanol. Geotherm. Res. 356, 141162.CrossRefGoogle Scholar
Francis, P., Oppenheimer, C. & Stevenson, D. 1993 Endogenous growth of persistently active volcanoes. Nature 366, 554557.CrossRefGoogle Scholar
Ghiorso, M.S. & Gualda, G.A.R. 2015 An H$_2$O-CO$_2$ mixed fluid saturation model compatible with rhyolite-MELTS. Contrib. Mineral. Petrol. 169 (6), 53.CrossRefGoogle Scholar
Ghiorso, M.S. & Sack, R.O. 1995 Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119 (2), 197212.CrossRefGoogle Scholar
Giordano, D., Russell, J.K. & Dingwell, D.B. 2008 Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett. 271, 123134.CrossRefGoogle Scholar
Gonnermann, H.M. & Manga, M. 2003 Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426 (6965), 432435.CrossRefGoogle Scholar
Gonnermann, H.M. & Manga, M. 2007 The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39, 321356.CrossRefGoogle Scholar
Grove, T.L. & Baker, M.B. 1983 Effects of melt density on magma mixing in calc-alkaline series lavas. Nature 305 (5933), 416418.CrossRefGoogle Scholar
Hasnain, A. & Alba, K. 2017 Buoyant displacement flow of immiscible fluids in inclined ducts: a theoretical approach. Phys. Fluids 29 (5), 052102.CrossRefGoogle Scholar
Hess, K.U. & Dingwell, D.B. 1996 Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am. Mineral. 81 (9–10), 12971300.Google Scholar
Hui, H. & Zhang, Y. 2007 Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim. Cosmochim. Acta 71 (2), 403416.CrossRefGoogle Scholar
Huppert, H.E. & Hallworth, M.A. 2007 Bi-directional flows in constrained systems. J. Fluid Mech. 578, 95112.CrossRefGoogle Scholar
Iacovino, K., Matthews, S., Wieser, P.E., Moore, G.M. & Bégué, F. 2021 VESIcal. Part I: an open-source thermodynamic model engine for mixed volatile (H$_2$O-CO$_2$) solubility in silicate melts. Earth Space Sci. 8 (11), e2020EA001584.CrossRefGoogle Scholar
Iacovino, K. & Till, C.B. 2019 DensityX: A program for calculating the densities of magmatic liquids up to 1,627 C and 30 kbar. Volcanica 2 (1), 110.CrossRefGoogle Scholar
Ilanko, T., Oppenheimer, C., Burgisser, A. & Kyle, P. 2015 Cyclic degassing of Erebus volcano, Antarctica. Bull. Volcanol. 77 (6), 56.CrossRefGoogle Scholar
Jaupart, C. & Vergniolle, S. 1988 Laboratory models of Hawaiian and Strombolian eruptions. Nature 331, 5860.CrossRefGoogle Scholar
Javoy, M. & Pineau, F. 1991 The volatiles record of a “popping” rock from the Mid-Atlantic Ridge at 14 N: chemical and isotopic composition of gas trapped in the vesicles. Earth Planet. Sci. Lett. 107 (3–4), 598611.CrossRefGoogle Scholar
Joseph, D.D., Bai, R., Chen, K.P. & Renardy, Y.Y. 1997 Core-annular flows. Annu. Rev. Fluid Mech. 29 (1), 6590.CrossRefGoogle Scholar
Joseph, D.D. & Renardy, Y.Y. 1992 Fundamentals of Two-Fluid Dynamics. Springer.Google Scholar
Kamenetsky, V.S., Pompilio, M., Métrich, N., Sobolev, A.V., Kuzmin, D.V. & Thomas, R. 2007 Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount Etna. Geology 35 (3), 255258.CrossRefGoogle Scholar
Kazahaya, K., Shinohara, H. & Saito, G. 1994 Excessive degassing of Izu-Oshima volcano: magma convection in a conduit. Bull. Volcanol. 56, 207216.CrossRefGoogle Scholar
Kazahaya, K., Shinohara, H. & Saito, G. 2002 Degassing process of Satsuma-Iwojima volcano, Japan: supply of volatile components from a deep magma chamber. Earth Planet. Space 54 (3), 327335.CrossRefGoogle Scholar
Kieffer, S.W. 1981 Blast dynamics at Mount St Helens on 18 May 1980. Nature 291 (5816), 568570.CrossRefGoogle Scholar
Koyaguchi, T. 2005 An analytical study for 1-dimensional steady flow in volcanic conduits. J. Volcanol. Geotherm. Res. 143 (1–3), 2952.CrossRefGoogle Scholar
Kurganov, A. & Tadmor, E. 2000 New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160 (1), 241282.CrossRefGoogle Scholar
Lange, R.A. 1997 A revised model for the density and thermal expansivity of K$_2$O-Na$_2$O-CaO-MgO-Al$_2$O$_2$- SiO$_2$ liquids from 700 to 1900 K: extension to crustal magmatic temperatures. Contrib. Mineral. Petrol. 130 (1), 111.CrossRefGoogle Scholar
Lange, R.A. & Carmichael, I.S.E. 1987 Densities of Na$_2$O-K$_2$O-CaO-MgO-FeO-Fe$_2$O$_2$-Al$_2$O$_2$-TiO$_2$- SiO$_2$ liquids: new measurements and derived partial molar properties. Geochim. Cosmochim. Acta 51 (11), 29312946.CrossRefGoogle Scholar
Le Gall, N. & Pichavant, M. 2016 a Experimental simulation of bubble nucleation and magma ascent in basaltic systems: implications for stromboli volcano. Am. Mineral. 101 (9), 19671985.CrossRefGoogle Scholar
Le Gall, N. & Pichavant, M. 2016 b Homogeneous bubble nucleation in H$_2$O-and H$_2$O-CO$_2$-bearing basaltic melts: results of high temperature decompression experiments. J. Volcanol. Geotherm. Res. 327, 604621.CrossRefGoogle Scholar
LeVeque, R.J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.CrossRefGoogle Scholar
Macedonio, G., Neri, A., Martí, J. & Folch, A. 2005 Temporal evolution of flow conditions in sustained magmatic explosive eruptions. J. Volcanol. Geotherm. Res. 143 (1–3), 153172.CrossRefGoogle Scholar
Martin, R.S., et al. 2010 A total volatile inventory for Masaya Volcano, Nicaragua. J. Geophys. Res. 115 (B9), B09215.Google Scholar
Mastin, L.G. 2002 Insights into volcanic conduit flow from an open-source numerical model. Geochem. Geophys. 3 (7), 118.CrossRefGoogle Scholar
Mastin, L.G. & Ghiorso, M.S. 2000 A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. Tech. Rep. U.S. Geol. Surv. Open File Report. 00-209.CrossRefGoogle Scholar
Melnik, O. 2000 Dynamics of two-phase conduit flow of high-viscosity gas-saturated magma: large variations of sustained explosive eruption intensity. Bull. Volcanol. 62 (3), 153170.CrossRefGoogle Scholar
Métrich, N. & Wallace, P.J. 2008 Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev. Mineral. Geochem. 69 (1), 363402.CrossRefGoogle Scholar
Mirzaeian, N. & Alba, K. 2018 Monodisperse particle-laden exchange flows in a vertical duct. J. Fluid Mech. 847, 134160.CrossRefGoogle Scholar
Moussallam, Y., Oppenheimer, C., Scaillet, B., Buisman, I., Kimball, C., Dunbar, N., Burgisser, A., Schipper, C.I., Andújar, J. & Kyle, P. 2015 Megacrystals track magma convection between reservoir and surface. Earth Planet. Sci. Lett. 413, 112.CrossRefGoogle Scholar
Newman, S. & Lowenstern, J.B. 2002 Volatilecalc: a silicate melt–H$_2$O–CO$_2$ solution model written in visual basic for excel. Comput. Geosci. 28 (5), 597604.CrossRefGoogle Scholar
Ochs, F.A. & Lange, R.A. 1999 The density of hydrous magmatic liquids. Science 283 (5406), 13141317.CrossRefGoogle ScholarPubMed
Oppenheimer, C., Moretti, R., Kyle, P.R., Eschenbacher, A., Lowenstern, J.B., Hervig, R.L. & Dunbar, N.W. 2011 Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth Planet. Sci. Lett. 306 (3), 261271.CrossRefGoogle Scholar
Palma, J.L., Calder, E.S., Basualto, D., Blake, S. & Rothery, D.A. 2008 Correlations between SO$_2$ flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile. J. Geophys. Res. 113, B10201.CrossRefGoogle Scholar
Papale, P. 1997 Modeling of the solubility of a one-component H$_2$O or CO$_2$ fluid in silicate liquids. Contrib. Mineral. Petrol. 126 (3), 237251.CrossRefGoogle Scholar
Papale, P. 1999 Modeling of the solubility of a two-component H$_2$O + CO$_2$ fluid in silicate liquids. Am. Mineral. 84 (4), 477492.CrossRefGoogle Scholar
Papale, P., Moretti, R. & Barbato, D. 2006 The compositional dependence of the saturation surface of H$_2$O+CO$_2$ fluids in silicate melts. Chem. Geol. 229 (1–3), 7895.CrossRefGoogle Scholar
Perinelli, C., Mollo, S., Gaeta, M., De Cristofaro, S.P., Palladino, D.M. & Scarlato, P. 2018 Impulsive supply of volatile-rich magmas in the shallow plumbing system of Mt. Etna volcano. Minerals 8 (11), 482.CrossRefGoogle Scholar
Picchi, D., Suckale, J. & Battiato, I. 2020 Taylor drop in a closed vertical pipe. J. Fluid Mech. 902, A19.CrossRefGoogle Scholar
Qin, Z., Beckett, F.M., Rust, A.C. & Suckale, J. 2021 Interactions between gas slug ascent and exchange flow in the conduit of persistently active volcanoes. J. Geophys. Res. 126 (9), e2021JB022120.CrossRefGoogle Scholar
Richter, D.H., Eaton, J.P., Murata, K.J., Ault, W.U. & Krivoy, H.L. 1970 Chronological narrative of the 1959-60 eruption of Kilauea volcano, Hawaii. US Geological Survey. Tech. Rep.CrossRefGoogle Scholar
Ripepe, M., Pistolesi, M., Coppola, D., Delle Donne, D., Genco, R., Lacanna, G., Laiolo, M., Marchetti, E., Ulivieri, G. & Valade, S. 2017 Forecasting effusive dynamics and decompression rates by magmastatic model at open-vent volcanoes. Sci. Rep. 7 (1), 3885.CrossRefGoogle ScholarPubMed
Sahagian, D. 2005 Volcanic eruption mechanisms: insights from intercomparison of models of conduit processes. J. Volcanol. Geotherm. Res. 1 (143), 115.CrossRefGoogle Scholar
Self, S., Wilson, L. & Nairn, I.A. 1979 Vulcanian eruption mechanisms. Nature 277 (5696), 440443.CrossRefGoogle Scholar
Shinohara, H. 2008 Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev. Geophys. 46 (4), RG4005.CrossRefGoogle Scholar
Sparks, R.S.J. 2003 Dynamics of magma degassing. Geol. Soc. Spec. Publ. 213 (1), 522.CrossRefGoogle Scholar
Sparks, R.S.J. & Young, S.R. 2002 The eruption of Soufrière Hills Volcano, Montserrat (1995–1999): overview of scientific results. Geol. Soc. Lond. Mem. 21 (1), 4569.CrossRefGoogle Scholar
Spilliaert, N., Allard, P., Métrich, N. & Sobolev, A.V. 2006 Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J. Geophys. Res. 111 (B4), B04203.Google Scholar
Starostin, A.B., Barmin, A.A. & Melnik, O.E. 2005 A transient model for explosive and phreatomagmatic eruptions. J. Volcanol. Geotherm. Res. 143 (1–3), 133151.CrossRefGoogle Scholar
Stevenson, D.S. & Blake, S. 1998 Modelling the dynamics and thermodynamics of volcanic degassing. Bull. Volcanol. 60 (4), 307317.CrossRefGoogle Scholar
Stoiber, R.E. & Williams, S.N. 1986 Sulfur and halogen gases at Masaya caldera complex, Nicaragua: total flux and variations with time. J. Geophys. Res. 91, 1221512231.CrossRefGoogle Scholar
Suckale, J., Keller, T., Cashman, K.V. & Persson, P.-O. 2016 Flow-to-fracture transition in a volcanic mush plug may govern normal eruptions at Stromboli. Geophys. Res. Lett. 43 (23), 12071.CrossRefGoogle Scholar
Suckale, J., Qin, Z., Picchi, D., Keller, T. & Battiato, I. 2018 Bistability of buoyancy-driven exchange flows in vertical tubes. J. Fluid Mech. 850, 525550.CrossRefGoogle Scholar
Swanson, D.A. 1972 Magma supply rate at Kilauea Volcano, 1952–1971. Science 175 (4018), 169170.CrossRefGoogle ScholarPubMed
Taghavi, S.M., Seon, T., Martinez, D.M. & Frigaard, I.A. 2009 Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit. J. Fluid Mech. 639, 135.CrossRefGoogle Scholar
Turcotte, D.L., Ockendon, H., Ockendon, J.R. & Cowley, S.J. 1990 A mathematical model of vulcanian eruptions. Geophys. J. Intl 103 (1), 211217.CrossRefGoogle Scholar
Wadsworth, F.B., Kennedy, B.M., Branney, M.J., von Aulock, F.W., Lavallée, Y. & Menendez, A. 2015 Exhumed conduit records magma ascent and drain-back during a strombolian eruption at Tongariro Volcano, New Zealand. Bull. Volcanol. 77 (9), 71.CrossRefGoogle Scholar
Wallace, P.J., Plank, T., Edmonds, M. & Hauri, E.H. 2015 Volatiles in magmas. In The Encyclopedia of Volcanoes (ed. H. Sigurdsson), pp. 163–183. Elsevier.CrossRefGoogle Scholar
Wang, L. & Bertozzi, A.L. 2014 Shock solutions for high concentration particle-laden thin films. SIAM J. Appl. Maths 74 (2), 322344.CrossRefGoogle Scholar
Wei, Z., Qin, Z. & Suckale, J. 2022 Magma mixing during conduit flow is reflected in melt-inclusion data from persistently degassing volcanoes. J. Geophys. Res. 127, e2021JB022799.CrossRefGoogle Scholar
Woods, A.W. 1995 A model of vulcanian explosions. Nucl. Engng Des. 155 (1–2), 345357.CrossRefGoogle Scholar
Zhou, J., Dupuy, B., Bertozzi, A.L. & Hosoi, A.E. 2005 Theory for shock dynamics in particle-laden thin films. Phys. Rev. Lett. 94 (11), 117803.CrossRefGoogle ScholarPubMed
Supplementary material: File

Peng et al. supplementary material

Peng et al. supplementary material

Download Peng et al. supplementary material(File)
File 2 MB