Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T22:03:36.126Z Has data issue: false hasContentIssue false

Disentangle plume-induced anisotropy in the velocity field in buoyancy-driven turbulence

Published online by Cambridge University Press:  01 September 2011

Quan Zhou
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China Shanghai Key Laboratory of Mechanics in Energy and Environment Engineering, Shanghai University, Shanghai 200072, China Modern Mechanics Division, E-Institutes of Shanghai Universities, Shanghai University, Shanghai 200072, China
Ke-Qing Xia*
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
*
Email address for correspondence: [email protected]

Abstract

We present a method of disentangling the anisotropies produced by the cliff structures in a turbulent velocity field. These cliff structures induce asymmetry in the velocity increments, which leads us to consider the plus and minus velocity structure functions (VSFs). We test the method in the system of turbulent Rayleigh–Bénard (RB) convection. It is found that in the RB system, the cliff structures in the velocity field are generated by thermal plumes. The plus velocity increments exclude cliff structures, while the minus ones include them. Our results show that the scaling exponents of the plus VSFs are in excellent agreement with those predicted for homogeneous and isotropic turbulence (HIT), whereas those of the minus VSFs exhibit significant deviations from HIT expectations in places where thermal plumes abound. These results demonstrate that plus and minus VSFs can be used to quantitatively study the effect of cliff structures in the velocity field and to effectively disentangle the associated anisotropies caused by these structures.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.Google Scholar
2. Arad, I., Biferale, L., Mazzitelli, I. & Procaccia, I. 1999 Disentangling scaling properties in anisotropic and inhomogeneous turbulence. Phys. Rev. Lett. 82, 50405043.Google Scholar
3. Arad, I., Dhruva, B., Kurien, S., L’vov, V. S., Procaccia, I. & Sreenivasan, K. R. 1998 Extraction of anisotropic contributions in turbulent flows. Phys. Rev. Lett. 81, 53305333.CrossRefGoogle Scholar
4. Belmonte, A. & Libchaber, A. 1996 Thermal signature of plumes in turbulent convection: the skewness of the derivative. Phys. Rev. E 53, 48934898.Google Scholar
5. Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. & Succi, S. 1993 Extended self-similarity in turbulent flows. Phys. Rev. E 48, R2932.CrossRefGoogle ScholarPubMed
6. Biferale, L., Calzavarini, E., Toschi, F. & Tripiccione, R. 2003 Universality of anisotropic fluctuations from numerical simulations of turbulent flows. Europhys. Lett. 64, 461467.CrossRefGoogle Scholar
7. Biferale, L., Lohse, D., Mazzitelli, I. & Toschi, F. 2002 Probing structures in channel flow through SO(3) and SO(2) decomposition. J. Fluid Mech. 452, 3959.CrossRefGoogle Scholar
8. Biferale, L. & Procaccia, I. 2005 Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 414, 43164.Google Scholar
9. Bolgiano, R. 1959 Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64, 22262229.Google Scholar
10. Celani, A., Lanotte, A., Mazzino, A. & Vergassola, M. 2001 Fronts in passive scalar turbulence. Phys. Fluids 13, 17681783.Google Scholar
11. Grossmann, S., von der Heydt, A. & Lohse, D. 2001 Scaling exponents in weakly anisotropic turbulence from the Navier–Stokes equation. J. Fluid Mech. 440, 381390.Google Scholar
12. Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165180.Google Scholar
13. Jurcisinova, E. & Jurcisin, M. 2008 Anomalous scaling of a passive scalar advected by a turbulent velocity field with finite correlation time and uniaxial small-scale anisotropy. Phys. Rev. E 77, 016306.CrossRefGoogle ScholarPubMed
14. Kunnen, R. P. J., Clercx, H. J. H., Geurts, B. J., van Bokhoven, L. J. A., Akkermanns, R. A. D. & Verzicco, R. 2008 Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh–Bénard convection. Phys. Rev. E 77, 016302.CrossRefGoogle ScholarPubMed
15. Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.Google Scholar
16. Moisy, F., Willaime, H., Andersen, J. S. & Tabeling, P. 2001 Passive scalar intermittency in low temperature helium flows. Phys. Rev. Lett. 86, 48274830.Google Scholar
17. Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT.Google Scholar
18. Moses, E., Zocchi, G. & Libchaber, A. 1993 An experimental study of laminar plumes. J. Fluid Mech. 251, 581601.Google Scholar
19. Obukhov, A. M. 1959 On the influence of archimedean forces on the structure of the temperature filed in a turbulent flow. Dokl. Akad. Nauk SSSR 125, 12461248.Google Scholar
20. Onorato, M. & Iuso, G. 2001 Probability density function and ‘plus’ and ‘minus’ structure functions in a turbulent channel flow. Phys. Rev. E 63, 025302(R).CrossRefGoogle Scholar
21. Qiu, X.-L & Tong, P. 2001 Onset of coherent oscillations in turbulent Rayleigh–Bénard convection. Phys. Rev. E 87, 094501.Google Scholar
22. Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2003 Measured local heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 90, 074501.CrossRefGoogle ScholarPubMed
23. Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2004 Measured local convective heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. E 70, 026308.Google Scholar
24. She, Z.-S. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336339.CrossRefGoogle ScholarPubMed
25. Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.Google Scholar
26. Sreenivasan, K. R., Vainshtein, S. I., Bhiladvala, R., San Gil, I., Chen, S. & Cao, N. 1996 Asymmetry of velocity increments in fully developed turbulence and the scaling of low-order moments. Phys. Rev. Lett. 77, 14881491.Google ScholarPubMed
27. Sun, C., Xia, K.-Q. & Tong, P. 2005 Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72, 026302.CrossRefGoogle Scholar
28. Sun, C., Zhou, Q. & Xia, K.-Q. 2006 Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504.CrossRefGoogle ScholarPubMed
29. Vainshtein, S. I. & Sreenivasan, K. R. 1994 Kolmogorov’s 4/5th law and intermittency in turbulence. Phys. Rev. Lett. 73, 30853088.Google Scholar
30. Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.Google Scholar
31. Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.Google Scholar
32. Xia, K.-Q., Sun, C. & Zhou, S.-Q. 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.Google Scholar
33. Zhou, Q., Li, C.-M., Lu, Z.-M. & Liu, Y.-L. 2011 Experimental investigation of longitudinal space–time correlations of the velocity field in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 683, 94111.Google Scholar
34. Zhou, Q., Sun, C. & Xia, K.-Q. 2008 Experimental investigation of homogeneity, isotropy and circulation of the velocity field in buoyancy-driven turbulence. J. Fluid Mech. 598, 361372.CrossRefGoogle Scholar
35. Zhou, S.-Q. & Xia, K.-Q. 2002 Plume statistics in thermal turbulence: mixing of an active scalar. Phys. Rev. Lett. 89, 184502.Google Scholar
36. Zhou, Q. & Xia, K.-Q. 2008 Comparative experimental study of local mixing of active and passive scalars in turbulent thermal convection. Phys. Rev. E 77, 056312.Google Scholar
37. Zhou, Q. & Xia, K.-Q. 2010 Universality of local dissipation scales in buoyancy-driven turbulence. Phys. Rev. Lett. 104, 124301.Google Scholar