Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:03:41.940Z Has data issue: false hasContentIssue false

Discrete element method–computational fluid dynamics analyses of flexible fibre fluidization

Published online by Cambridge University Press:  08 January 2021

Yiyang Jiang
Affiliation:
Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, PR China
Yu Guo*
Affiliation:
Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, PR China
Zhaosheng Yu
Affiliation:
Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, PR China
Xia Hua
Affiliation:
Weisberg Department of Mechanical Engineering, Marshall University, Huntington, WV25755, USA
Jianzhong Lin*
Affiliation:
Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, PR China
Carl R. Wassgren
Affiliation:
School of Mechanical Engineering, Purdue University, West Lafayette, IN47907, USA
Jennifer S. Curtis
Affiliation:
Department of Chemical Engineering, University of California Davis, Davis, CA95616, USA
*
 Email addresses for correspondence: [email protected], [email protected]
 Email addresses for correspondence: [email protected], [email protected]

Abstract

Gas-fluidized beds of flexible fibres, which have been rarely studied before, are investigated in this work using the coupled approach of the discrete element method and computational fluid dynamics. In the present numerical method, gas–fibre interaction is modelled by calculating the interaction force for each constituent element in the fibre, and the composition of the interaction forces on the constituent elements generates a resultant hydrodynamic force and a resultant hydrodynamic torque on the fibre. Pressure drops and fibre orientation results from the present simulations with various fibre aspect ratios are in good agreement with previous experimental and simulation results. Some novel results are obtained for the effects of fibre flexibility. Larger hydrodynamic forces on fibres (before the bed is fluidized) and smaller minimum fluidization velocities (MFVs) are observed for more flexible fibre beds due to the smaller porosities, while smaller hydrodynamic forces are obtained for the more flexible fibres when the beds are fluidized with significant fibre motion. By scaling the superficial gas velocity using the MFVs, the data of pressure drop can collapse onto the Ergun correlation for stiff fibres of various aspect ratios; however, the pressure drop curves deviate from the Ergun correlation for very flexible fibres, due to the significant fibre bed expansion before the MFV is reached. The fibre aspect ratio and flexibility both have an impact on the solids mixing rate, and it is found that the solids mixing rates are essentially determined by the ratio of the superficial gas velocity to MFV.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. B. & Jackson, R. 1967 A fluid mechanical description of fluidised beds. Ind. Engng Chem. Fundam. 6, 527539.CrossRefGoogle Scholar
Boer, L., Buist, K. A., Deen, N. G., Padding, J. T. & Kuipers, J. A. M. 2018 Experimental study on orientation and de-mixing phenomena of elongated particles in gas-fluidized beds. Powder Technol. 329, 332344.CrossRefGoogle Scholar
Buist, K. A., Jayaprakash, P., Kuipers, J. A. M., Deen, N. G. & Padding, J. T. 2017 Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed. AIChE J. 63, 53355342.CrossRefGoogle Scholar
Cai, J., Yuan, Z. & Zhao, X. 2016 Study on two-way coupling of gas–solid two-phase flow of cylindrical particles. Powder Technol. 300, 136145.CrossRefGoogle Scholar
Cai, J., Zhao, X., Li, Q. & Yuan, Z. 2013 Number concentration of cylindrical particles in a fluidized bed. Chin. J. Chem. Engng 21 (1), 94103.CrossRefGoogle Scholar
Di Felice, R. 1994 The voidage function for fluid–particle interaction systems. Intl J. Multiphase Flow 20, 153159.CrossRefGoogle Scholar
Ergun, S. 1952 Fluid flow through packed columns. Chem. Engng Prog. 48 (2), 8994.Google Scholar
Gan, J., Zhou, Z. & Yu, A. 2016 CFD–DEM modeling of gas fluidization of fine ellipsoidal particles. AIChE J. 62, 6277.CrossRefGoogle Scholar
Geng, F., Luo, G., Li, Y., Yuan, L., Yuan, Z. & Wu, X. 2014 Numerical simulation on distribution characteristics of flexible filamentous particles in a fluidised bed dryer. Powder Technol. 267, 322332.CrossRefGoogle Scholar
Guo, Y., Buettner, K., Lane, V., Wassgren, C., Ketterhagen, W., Hancock, B. & Curtis, J. 2019 Computational and experimental studies of flexible fiber flows in a normal-stress-fixed shear cell. AIChE J. 65 (1), 6474.CrossRefGoogle Scholar
Guo, Y. & Curtis, J. 2015 Discrete element method simulations for complex granular flows. Annu. Rev. Fluid Mech. 47, 2146.CrossRefGoogle Scholar
Guo, Y., Wassgren, C., Hancock, B., Ketterhagen, W. & Curtis, J. 2013 Validation and time step determination of discrete element modeling of flexible fibers. Powder Technol. 249, 386395.CrossRefGoogle Scholar
Guo, Y., Wassgren, C., Hancock, B., Ketterhagen, W. & Curtis, J. 2015 Computational study of granular shear flows of dry, flexible fibers using the discrete element method. J. Fluid Mech. 775, 2452.CrossRefGoogle Scholar
Guo, Y., Wassgren, C., Hancock, B., Ketterhagen, W. & Curtis, J. 2017 Predicting breakage of high aspect ratio particles in an agitated bed using the discrete element method. Chem. Engng Sci. 158, 314327.CrossRefGoogle Scholar
Guo, Y., Wassgren, C., Ketterhagen, W., Hancock, B., James, B. & Curtis, J. 2012 A numerical study of granular shear flows of rod-like particles using the discrete element method. J. Fluid Mech. 713, 126.CrossRefGoogle Scholar
Hertz, H. 1882 Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156171.Google Scholar
Hilton, J. E., Mason, L. R. & Cleary, P. W. 2010 Dynamics of gas–solid fluidized beds with non-spherical particle geometry. Chem. Engng Sci. 65, 15841596.CrossRefGoogle Scholar
Hölzer, A. & Sommerfeld, M. 2008 New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 184, 361365.CrossRefGoogle Scholar
Kafui, K. D., Thornton, C. & Adams, M. J. 2002 Discrete particle-continuum fluid modelling of gas–solid fluidised beds. Chem. Engng Sci. 57, 23952410.CrossRefGoogle Scholar
Kruggel-Emden, H. & Vollmari, K. 2016 Flow-regime transitions in fluidized beds of non-spherical particles. Particuology 29, 115.CrossRefGoogle Scholar
Liu, P. & Hrenya, C. M. 2018 Cluster-induced deagglomeration in dilute gravity-driven gas-solid flows of cohesive grains. Phys. Rev. Lett. 121, 238001.CrossRefGoogle ScholarPubMed
Lu, G., Third, J. R. & Müller, C. R. 2015 Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Engng Sci. 127, 425465.CrossRefGoogle Scholar
Ma, H., Xu, L. & Zhao, Y. 2017 CFD-DEM simulation of fluidization of rod-like particles in a fluidized bed. Powder Technol. 314, 355366.CrossRefGoogle Scholar
Mahajan, V. V., Nijssen, T. M. J., Kuipers, J. A. M. & Padding, J. T. 2018 a Non-spherical particles in a pseudo-2D fluidised bed: modelling study. Chem. Engng Sci. 192, 11051123.CrossRefGoogle Scholar
Mahajan, V. V., Padding, J. T., Nijssen, T. M. J., Buist, K. A. & Kuipers, J. A. M. 2018 b Non-spherical particles in a pseudo-2D fluidised bed: experimental study. AIChE J. 64, 15731590.CrossRefGoogle Scholar
Mema, I., Buist, K. A., Kuipers, J. A. M. & Padding, J. T. 2020 Fluidization of spherical versus elongated particles: experimental investigation using magnetic particle tracking. AIChE J. 66, e16895.CrossRefGoogle Scholar
Mema, I., Mahajan, V. V., Fitzgerald, B. W. & Padding, J. T. 2019 Effect of lift force and hydrodynamic torque on fluidisation of non-spherical particles. Chem. Engng Sci. 195, 642656.CrossRefGoogle Scholar
Mindlin, R. D. & Deresiewicz, H. 1953 Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20, 327344.Google Scholar
Oschmann, T., Hold, J. & Kruggel-Emden, H. 2014 Numerical investigation of mixing and orientation of non-spherical particles in a model type fluidized bed. Powder Technol. 258, 304323.CrossRefGoogle Scholar
Pan, T. W., Joseph, D. D., Bai, R., Glowinski, R. & Sarin, V. 2002 Fluidization of 1204 spheres: simulation and experiment. J. Fluid Mech. 451, 169191.CrossRefGoogle Scholar
Parker, D. J. 2017 Positron emission particle tracking and its application to granular media. Rev. Sci. Instrum. 88, 051803.CrossRefGoogle ScholarPubMed
Potyondy, D. O. & Cundall, P. A. 2004 A bonded-particle model for rock. Intl J. Rock Mech. Mining Sci. 41 (8), 13291364.CrossRefGoogle Scholar
Pusca, A., Bobancu, S. & Duta, A. 2010 Mechanical properties of rubber – an overview. Bull. Transil. Univ. Braşov 3 (52), 107114.Google Scholar
Ren, B., Zhong, W., Jin, B., Shao, Y. & Yuan, Z. 2013 Numerical simulation on the mixing behavior of corn-shaped particles in a spouted bed. Powder Technol. 234, 5866.CrossRefGoogle Scholar
Rhodes, M. 2008 Introduction to Particle Technology, 2nd edn, pp. 191–193. John Wiley & Sons.Google Scholar
Shrestha, S., Kuang, S., Yu, A. & Zhou, Z. 2019 Bubble dynamics in bubbling fluidized beds of ellipsoidal particles. AIChE J. 65, e16736.CrossRefGoogle Scholar
Shrestha, S., Kuang, S., Yu, A. & Zhou, Z. 2020 Effect of van der Waals force on bubble dynamics in bubbling fluidized beds of ellipsoidal particles. Chem. Engng Sci. 212, 115343.CrossRefGoogle Scholar
Sippola, P., Kolehmainen, J., Ozel, A., Liu, X., Saarenrinne, P. & Sundaresan, S. 2018 Experimental and numerical study of wall layer development in a tribocharged fuidized bed. J. Fluid Mech. 849, 860884.CrossRefGoogle Scholar
Thornton, C. & Yin, K. K. 1991 Impact of elastic spheres with and without adhesion. Powder Technol. 65 (1–3), 113123.CrossRefGoogle Scholar
Vollmari, K., Jasevičius, R. & Kruggel-Emden, H. 2016 Experimental and numerical study of fluidization and pressure drop of spherical and non-spherical particles in a model scale fluidized bed. Powder Technol. 291, 506521.CrossRefGoogle Scholar
Vollmari, K., Oschmann, T., Wirtz, S. & Kruggel-Emden, H. 2015 Pressure drop investigations in packings of arbitrary shaped particles. Powder Technol. 271, 109124.CrossRefGoogle Scholar
Wouterse, A., Williams, S. R. & Philipse, A. P. 2007 Effect of particle shape on the density and microstructure of random packings. J. Phys.: Condens. Matter 19, 406215.Google ScholarPubMed
Wu, K., Dai, L., Li, B., Gu, C., Yuan, Z. & Luo, D. 2019 Study on flow characteristics of dilute phase flexible ribbon particles in a fluidised bed riser using particle tracking velocimetry. Chem. Engng Res. Des. 152, 254268.CrossRefGoogle Scholar
Wu, K., Gao, L., Yuan, Z., Li, B., Zhu, W., Wu, Y., Zhang, K., Lu, D. & Luo, D. 2018 Effect of moisture content and length of flexible filamentous particles on cluster characteristics in a fluidised bed dryer. Chem. Engng Res. Des. 136, 403416.CrossRefGoogle Scholar
Wu, K., Zhang, E., Xu, J., Yuan, Z., Zhu, W., Li, B., Wang, L. & Luo, D. 2020 Three-dimensional simulation of gas-solid flow in a fluidised bed with flexible ribbon particles. Intl J. Multiphase Flow 124, 103181.CrossRefGoogle Scholar
Żak, M. & Kobielarz, M. 2010 The Proceedings of 9th Youth Symposium on Experimental Solid Mechanics, Trieste, Italy, July 7–10, 2010, pp. 219–221.Google Scholar
Zhong, W., Yu, A., Liu, X., Tong, Z. & Zhang, H. 2016 DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108152.CrossRefGoogle Scholar
Zhong, W., Zhang, Y., Jin, B. & Zhang, M. 2009 Discrete element method simulation of cylinder-shaped particle flow in a gas-solid fluidized bed. Chem. Engng Technol. 32 (3), 386391.CrossRefGoogle Scholar
Zhou, Z. Y., Pinson, D., Zou, R. P. & Yu, A. B. 2011 Discrete particle simulation of gas fluidization of ellipsoidal particles. Chem. Engng Sci. 66 (23), 61286145.CrossRefGoogle Scholar
Zhu, H., Zhou, Z., Yang, R. & Yu, A. B. 2007 Discrete particle simulation of particulate systems: theoretical developments. Chem. Engng Sci. 62, 33783396.CrossRefGoogle Scholar