Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T15:13:08.432Z Has data issue: false hasContentIssue false

Direct simulation of turbulent swept flow over a wire in a channel

Published online by Cambridge University Press:  29 March 2010

R. RANJAN*
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA
C. PANTANO
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA
P. FISCHER
Affiliation:
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
*
Email address for correspondence: [email protected]

Abstract

Turbulent swept flow over a cylindrical wire placed on a wall of a channel is investigated using direct numerical simulations. This geometry is a model of the flow through the wire-wrapped fuel pins, the heat exchanger, typical of many nuclear reactor designs. Mean flow along and across the wire axis is imposed, leading to the formation of separated flow regions. The Reynolds number based on the bulk velocity along the wire axis direction and the channel half height is 5400 and four cases are simulated with different flowrates across the wire. This configuration is topologically similar to backward-facing steps or slots with swept flow, except that the dominant flow is along the obstacle axis in the present study and the crossflow is smaller than the axial flow, i.e. the sweep angle is large. Mean velocities, turbulence statistics, wall shear stress and instantaneous flow structures are investigated. Particular attention is devoted to the statistics of the shear stress on the walls of the channel and the wire in the recirculation zone. The flow around the mean reattachment region, at the termination of the recirculating bubble, does not exhibit the typical decay of the mean shear stress observed in classical backward-facing step flows owing to the presence of a strong axial flow. The evolution of the mean wall shear stress angle after reattachment indicates that the flow recovers towards equilibrium at a rather slow rate, which decreases with sweep angle. Finally, the database is analysed to estimate resolution requirements, in particular around the recirculation zones, for large-eddy simulations. This has implications in more complete geometrical models of a wire-wrapped assembly, involving hundreds of fuel pins, where only turbulence modelling can be afforded computationally.

Type
Papers
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright
Copyright © Cambridge University Press 2010. This is a work of the U.S. Government and is not subject to copyright protection in the United States.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acharya, S., Dutta, S., Myrum, T. A. & Baker, R. S. 1994 Turbulent flow past a surface-mounted two-dimensional rib. J. Fluids Engng 116, 238246.CrossRefGoogle Scholar
Adams, E. W. & Johnston, J. P. 1988 Effects of the separating shear layer on the reattachment flow structure. Part 2. Reattachment length and wall shear stress. Exp. Fluids 6, 493499.CrossRefGoogle Scholar
Angele, K. P. & Muhammad-Klingmann, B. 2006 PIV measurements in a weakly separating and reattaching turbulent boundary layer. Eur. J. Mech. – B/Fluids 25 (2), 204222.CrossRefGoogle Scholar
Armaly, B. F., Durst, F., Pereira, J. C. F. & Schönung, B. 1983 Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473496.CrossRefGoogle Scholar
Bradshaw, P. 1987 Turbulent secondary flows. Annu. Rev. Fluid Mech. 19, 5374.CrossRefGoogle Scholar
Bradshaw, P. & Wong, F. 1972 The reattachment and relaxation of a turbulent shear layer. J. Fluid Mech. 52, 113135.CrossRefGoogle Scholar
Camussi, R., Felli, M., Pereira, F., Aloisio, G. & Marco, A. D. 2008 Statistical properties of wall pressure fluctuations over a forward-facing step. Phys. Fluids 20, 075113.CrossRefGoogle Scholar
Caruelle, B. & Ducros, F. 2003 Detached-eddy simulations of attached and detached boundary layers. Intl J. Comput. Fluid Dyn. 17, 433451(19).CrossRefGoogle Scholar
Chun, S. & Sung, H. J. 2003 Large-scale vortical structure of turbulent separation bubble affected by unsteady wake. Exp. Fluids 34, 572584.CrossRefGoogle Scholar
Deck, S. & Thorigny, P. 2007 Unsteadiness of an axisymmetric separating-reattaching flow: numerical investigation. Phys. Fluids 19, 065103.CrossRefGoogle Scholar
Dejoan, A. & Leschziner, M. A. 2004 Large eddy simulation of periodically perturbed separated flow over a backward-facing step. Intl J. Heat Fluid Flow 25 (4), 581592.CrossRefGoogle Scholar
Dianat, M. & Castro, I. P. 1991 Turbulence in a separated boundary layer. J. Fluid Mech. 226, 91123.CrossRefGoogle Scholar
Eaton, J. K. & Johnston, J. P. 1981 A review of research on subsonic turbulent flow reattachment. AIAA J. 19, 10931100.CrossRefGoogle Scholar
Farabee, T. M. & Casarella, M. J. 1986 Measurements of fluctuating wall pressure for separated/reattached boundary layer flows. J. Vib. Acoust. Stress. Reliab. Des. 108, 301307.CrossRefGoogle Scholar
Fröhlich, J., Mellen, C. P., Rodi, W., Temmerman, L. & Leschziner, M. A. 2005 Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 1966.CrossRefGoogle Scholar
Gallaire, F., Marquillie, M. & Ehrenstein, U. 2007 Three-dimensional transverse instabilities in detached boundary layers. J. Fluid Mech. 571, 221233.CrossRefGoogle Scholar
Geurts, B. 2006 Interacting errors in large-eddy simulation: a review of recent developments. J. Turbul. 7 (55)116.CrossRefGoogle Scholar
Griffith, M. D., Thompson, M. C., Leweke, T., Hourigan, K. & Anderson, W. P. 2007 Wake behaviour and instability of flow through a partially blocked channel. J. Fluid Mech. 582, 319340.CrossRefGoogle Scholar
Henderson, R. D. 1994 Unstructured spectral element methods: parallel algorithms and simulations. PhD thesis, Princeton University, Princeton, NJ.Google Scholar
Henderson, R. D. & Karniadakis, G. E. 1995 Unstructured spectral element methods for simulation of turbulent flows. J. Comput. Phys. 122, 191217.CrossRefGoogle Scholar
Honkan, A. & Andreopoulos, Y. 1997 Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers. J. Fluid Mech. 350, 2996.CrossRefGoogle Scholar
Hudy, L. M., Naguib, A. & Humphreys, W. M. 2007 Stochastic estimation of a separated-flow field using wall-pressure-array measurements. Phys. Fluids 19, 024103.CrossRefGoogle Scholar
Hwang, R. R., Chow, Y. C. & Peng, Y. F. 1999 Numerical study of turbulent flow over two-dimensional surface mounted ribs in a channel. Intl J. Numer. Methods Fluids 31, 767785.3.0.CO;2-A>CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.CrossRefGoogle Scholar
Johnston, J. P. 1970 Measurements in a 3-dimensional turbulent boundary layer induced by a swept, forward facing step. J. Fluid Mech. 42, 823844.CrossRefGoogle Scholar
Kaiktsis, L. & Monkewitz, P. A. 2003 Global destabilization of flow over a backward-facing step. Phys. Fluids 15, 3647.CrossRefGoogle Scholar
Kaltenbach, H.-J. 2003 The effect of sweep-angle variation on the turbulence structure in a separated, three-dimensional flow. Theor. Comput. Fluid Dyn. 16 (3), 187210.CrossRefGoogle Scholar
Kaltenbach, H.-J. & Janke, G. 2000 Direct numerical simulation of flow separation behind a swept, rearward-facing step at ReH = 3000. Phys. Fluids 12, 2320.CrossRefGoogle Scholar
Karniadakis, G. E. 1999 Simulating turbulence in complex geometries. Fluid Dyn. Res. 24, 343362.CrossRefGoogle Scholar
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414443.CrossRefGoogle Scholar
Kays, W. M. & Crawford, M. E. 2004 Convective Heat and Mass Transfer. McGraw Hill.Google Scholar
Kiel, R. & Vieth, D. 1995 Experimental and theoretical investigations of the near-wall region in a turbulent separated and reattached flow. Exp. Therm. Fluid Sci. 11 (3), 243254.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kiya, M. & Sasaki, K. 1985 Structure of large-scale vortices and unsteady reverse flow in the reattaching zone of a turbulent separation bubble. J. Fluid Mech. 154, 463491.CrossRefGoogle Scholar
Laskowski, G. M. & Durbin, P. A. 2007 Direct numerical simulations of turbulent flow through a stationary and rotating infinite serpentine passage. Phys. Fluids 19, 015101.CrossRefGoogle Scholar
Le, H., Moin, P. & Kim, J. 1997 Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349374.CrossRefGoogle Scholar
Lee, I. & Sung, H. J. 2002 Multiple-arrayed pressure measurement for investigation of the unsteady flow structure of a reattaching shear layer. J. Fluid Mech. 463, 377402.CrossRefGoogle Scholar
Li, Y. & Naguib, A. M. 2005 High-frequency oscillating-hot-wire sensor for near-wall diagnostics in separated flows. AIAA J. 43 (3), 520529.CrossRefGoogle Scholar
Liu, Y. Z., Ke, F., Chen, H. P. & Sung, H. J. 2006 A wall-bounded turbulent mixing layer flow over an open step. I. Time-mean and spectral characteristics. J. Turbul. 7 (65), 117.CrossRefGoogle Scholar
Liu, Y. Z., Ke, F., Chen, H. P. & Sung, H. J. 2007 A wall-bounded turbulent mixing layer flow over an open step. Part 2. Unsteady characteristics. J. Turbul. 8 (26), 117.CrossRefGoogle Scholar
Liua, Y. Z., Ke, F. & Sung, H. J. 2008 Unsteady separated and reattaching turbulent flow over a two-dimensional square rib. J. Fluids Struct. 24, 366381.CrossRefGoogle Scholar
Marquillie, M. & Ehrenstein, U. 2003 On the onset of nonlinear oscillations in a separating boundary-layer flow. J. Fluid Mech. 490, 169188.CrossRefGoogle Scholar
Marquillie, M., Laval, J.-P. & Dolganov, R. 2008 Direct numerical simulation of a separated channel flow with a smooth profile. J. Turbul. 9, 123.CrossRefGoogle Scholar
Mellen, C. P., Fröhlich, J. & Rodi, W. 2000 Large eddy simulation of the flow over periodic hills. In Proc. IMACS World Congress (ed. Deville, M. & Owens, R.), Lausanne, Switzerland.Google Scholar
Meyers, J., Geurts, B. & Baelmans, M. 2003 Database analysis of errors in large-eddy simulation. Phys. Fluids 15 (9), 27402755.CrossRefGoogle Scholar
Meyers, J., Geurts, B. & Sagaut, P. 2007 A computational error-assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model. J. Comput. Phys. 227 (1), 156173.CrossRefGoogle Scholar
Meyers, J., Sagaut, P. & Geurts, B. 2006 Optimal model parameters for multi-objective large-eddy simulations. Phys. Fluids 18 (095103).CrossRefGoogle Scholar
Mittal, R., Simmons, S. P. & Najjar, F. 2003 Numerical study of pulsatile flow in a constricted channel. J. Fluid Mech. 485, 337378.CrossRefGoogle Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539578.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2007 Direct numerical simulation of round turbulent jets in crossflow. J. Fluid Mech. 574, 5984.CrossRefGoogle Scholar
Na, Y. & Moin, P. 1998 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379405.CrossRefGoogle Scholar
Nepomuceno, H. G. & Lueptow, R. M. 1997 Pressure and shear stress measurements at the wall in a turbulent boundary layer on a cylinder. Phys. Fluids 9, 27322739.CrossRefGoogle Scholar
Nickels, T. B. 2004 Inner scaling for wall-bounded flows subject to large pressure gradients. J. Fluid Mech. 521, 217239.CrossRefGoogle Scholar
Peller, N. & Manhart, M. 2006 New Results in Numerical and Experimental Fluid Mechanics V. Springer.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pope, S. 2004 Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 35.CrossRefGoogle Scholar
Rajagopalan, S. & Antonia, R. A. 1993 Structure of the velocity field associated with the spanwise vorticity in the wall region of a turbulent boundary layer. Phys. Fluids A 5 (10), 25022510.CrossRefGoogle Scholar
Rani, H. P., Sheu, T. W. H. & Tsai, E. S. F. 2007 Eddy structures in a transitional backward-facing step flow. J. Fluid Mech. 588, 4358.CrossRefGoogle Scholar
Rodi, W. 2006 DNS/LES of some engineering flows. Fluid Dyn. Res. 38, 145173.CrossRefGoogle Scholar
Sadeque, M. A. F., Rajaratnam, N. & Loewen, M. R. 2008 Flow around cylinders in open channels. J. Engng Mech. 134 (1), 6071.Google Scholar
Schumann, U. 1975 Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376404.CrossRefGoogle Scholar
Sheu, T. W. H. & Rani, H. P. 2006 Exploration of vortex dynamics for transitional flows in a three-dimensional backward-facing step channel. J. Fluid Mech. 550, 6183.CrossRefGoogle Scholar
Shih, C. & Ho, C.-M. 1994 Three-dimensional recirculating flow in a backward facing step. J. Fluids Engng 116, 228232.CrossRefGoogle Scholar
Simpson, R. L. 1996 Aspects of turbulent boundary-layer separation. Prog. Aerosp. Sci. 32, 457521.CrossRefGoogle Scholar
Snarski, S. R. & Lueptow, R. M. 1995 Wall pressure and coherent structures in a turbulent boundary layer on a cylinder in axial flow. J. Fluid Mech. 286, 137171.CrossRefGoogle Scholar
Song, S. & Eaton, J. K. 2004 Flow structures of a separating, reattaching, and recovering boundary layer for a large range of Reynolds number. Exp. Fluids 36, 642653.CrossRefGoogle Scholar
Spalart, P. R. & Coleman, G. N. 1997 Numerical study of a separation bubble with heat transfer. Eur. J. Mech. – B/Fluids 16 (2), 169189.Google Scholar
Spalart, P. R. & Strelets, M. K. 2000 Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329349.CrossRefGoogle Scholar
Weber, D. J. & Danberg, J. E. 1992 Correlation of mean velocity measurements downstream of a swept backward-facing step. AIAA J. 30, 27012706.CrossRefGoogle Scholar
Webster, D. R., DeGraaff, D. B. & Eaton, J. K. 1996 Turbulence characteristics of a boundary layer over a swept bump. J. Fluid Mech. 323, 122.CrossRefGoogle Scholar
Wilhelm, D., Härtel, C. & Kleiser, L. 2003 Computational analysis of the two-dimensional–three-dimensional transition in forward-facing step flow. J. Fluid Mech. 489, 127.CrossRefGoogle Scholar
Wood, D. H. & Bradshaw, P. 1982 A turbulent mixing layer constrained by a solid surface. Part 1. Measurements before reaching the surface. J. Fluid Mech. 122, 5789.CrossRefGoogle Scholar
Wu, X. A. & Squires, K. D. 1998 Numerical investigation of the turbulent boundary layer over a bump. J. Fluid Mech. 362, 229271.CrossRefGoogle Scholar
Zang, T. A. 1991 On the rotational and skew-symmetric forms for incompressible flow simulations. Appl. Numer. Math. 7, 2740.CrossRefGoogle Scholar