Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T03:21:20.087Z Has data issue: false hasContentIssue false

Direct simulation of surface roughness signature of internal wave with deterministic energy-conservative model

Published online by Cambridge University Press:  24 March 2020

Xuanting Hao
Affiliation:
Department of Mechanical Engineering, and St. Anthony Falls Laboratory,University of Minnesota, Minneapolis, MN55455, USA
Lian Shen*
Affiliation:
Department of Mechanical Engineering, and St. Anthony Falls Laboratory,University of Minnesota, Minneapolis, MN55455, USA
*
Email address for correspondence: [email protected]

Abstract

In this simulation-based study, we investigate the surface roughness signature induced by internal solitary waves in oceans. We present the first-ever effort to directly capture the surface roughness signature with a deterministic two-layer model to avoid the singularity encountered in the traditional wave–current interaction theory. By capturing over four million wave components, the simulation resolves the surface wave and internal wave dynamics simultaneously. The surface signature characterized by a rough region followed by a smooth region travelling with an internal wave is quantified by the local wave geometry variation and the wave energy change. The surface wave dynamics are analysed in the wavenumber–frequency slope spectrum calculated in the frame moving with the internal wave. The asymmetric behaviours of right-moving and left-moving surface waves are found to contribute to the surface signature formation. Our results show that the formation of the surface signature is essentially an energy-conservative process and justify the use of the wave-phase-resolved two-layer model.

Type
JFM Rapids
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, M.-R., Liu, Y. & Yue, D. K. P. 2009a Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part I. Perturbation analysis. J. Fluid Mech. 624, 191224.CrossRefGoogle Scholar
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2009b Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part II. Numerical simulation. J. Fluid Mech. 624, 225253.CrossRefGoogle Scholar
Alpers, W. 1985 Theory of radar imaging of internal waves. Nature 314, 245247.CrossRefGoogle Scholar
Bakhanov, V. V. & Ostrovsky, L. A. 2002 Action of strong internal solitary waves on surface waves. J. Geophys. Res.: Oceans 107 (C10), 3139.CrossRefGoogle Scholar
Chartrand, R. 2011 Numerical differentiation of noisy, nonsmooth data. ISRN Applied Mathematics 2011, 164564.CrossRefGoogle Scholar
Craig, W., Guyenne, P. & Sulem, C. 2012 The surface signature of internal waves. J. Fluid Mech. 710, 277303.CrossRefGoogle Scholar
Dean, R. G. & Dalrymple, R. A. 1991 Water Wave Mechanics for Engineers and Scientists. World Scientific.CrossRefGoogle Scholar
Donato, A. N., Peregrine, D. H. & Stocker, J. R. 1999 The focusing of surface waves by internal waves. J. Fluid Mech. 384, 2758.CrossRefGoogle Scholar
Euvé, L. P., Michel, F., Parentani, R. & Rousseaux, G. 2015 Wave blocking and partial transmission in subcritical flows over an obstacle. Phys. Rev. D 91 (2), 024020.CrossRefGoogle Scholar
Hao, X.2019 A song of atmosphere and ocean: modeling and simulation-based study of nonlinear waves. PhD thesis, University of Minnesota, Minneapolis, MN.Google Scholar
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P. et al. 1973 Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP). Deutsches Hydrographisches Institut.Google Scholar
Helfrich, K. R. & Melville, W. K. 2006 Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395425.CrossRefGoogle Scholar
Jackson, C., Silva, J. D. & Jeans, G. 2013 Nonlinear internal waves in synthetic aperture radar imagery. Oceanography 26 (2), 6879.CrossRefGoogle Scholar
Jiang, S. W., Kovačič, G., Zhou, D. & Cai, D. 2019 Modulation-resonance mechanism for surface waves in a two-layer fluid system. J. Fluid Mech. 875, 807841.CrossRefGoogle Scholar
Kodaira, T., Waseda, T., Miyata, M. & Choi, W. 2016 Internal solitary waves in a two-fluid system with a free surface. J. Fluid Mech. 804, 201223.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Liu, B. & He, Y. 2016 SAR raw data simulation for ocean scenes using inverse Omega-K algorithm. IEEE Trans. Geosci. Remote Sens. 54 (10), 61516169.CrossRefGoogle Scholar
Martin, S. 2014 An Introduction to Ocean Remote Sensing, 2nd edn. Cambridge University Press.Google Scholar
Munk, W. H. 1950 Orgin and generation of waves. Proc. First Conf. Coastal Engng 1 (1), 14.Google Scholar
Nardin, J. C., Rousseaux, G. & Coullet, P. 2009 Wave–current interaction as a spatial dynamical system: Analogies with rainbow and black hole physics. Phys. Rev. Lett. 102 (12), 124504.CrossRefGoogle ScholarPubMed
Ortiz-Suslow, D. G., Wang, Q., Kalogiros, J., Yamaguchi, R., Paolo, T., Terrill, E., Shearman, R. K., Welch, P. & Savelyev, I. 2019 Interactions between nonlinear internal ocean waves and the atmosphere. Geophys. Res. Lett. 46 (15), 92919299.CrossRefGoogle Scholar
Osborne, A. R. & Burch, T. L. 1980 Internal solitons in the Andaman Sea. Science 208 (4443), 451460.CrossRefGoogle ScholarPubMed
Peregrine, D. H. 1976 Interaction of water waves and currents. In Advances in Applied Mechanics (ed. Yih, C.-S.), pp. 9117. Elsevier.Google Scholar
Perry, R. B. & Schimke, G. R. 1965 Large-amplitude internal waves observed off the northwest coast of Sumatra. J. Geophys. Res. 70 (10), 23192324.CrossRefGoogle Scholar
Schützhold, R. & Unruh, W. G. 2002 Gravity wave analogues of black holes. Phys. Rev. D 66 (4), 044019.CrossRefGoogle Scholar
Smith, R. 1975 The reflection of short gravity waves on a non-uniform current. Math. Proc. Camb. Phil. Soc. 78 (03), 517525.CrossRefGoogle Scholar
Stanton, T. P. & Ostrovsky, L. A. 1998 Observations of highly nonlinear internal solitons over the continental shelf. Geophys. Res. Lett. 25 (14), 26952698.CrossRefGoogle Scholar
Sutherland, B. R. 2010 Internal Gravity Waves. Cambridge University Press.CrossRefGoogle Scholar
Tanaka, M. & Wakayama, K. 2015 A numerical study on the energy transfer from surface waves to interfacial waves in a two-layer fluid system. J. Fluid Mech. 763, 202217.CrossRefGoogle Scholar
Woodson, C. B. 2018 The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Marine Sci. 10 (1), 421441.CrossRefGoogle ScholarPubMed
Yoshida, T. 2017 Azimuthal ocean wave emerged in SAR image spectra under specific condition. J. Geophys. Res.: Oceans 122 (12), 96259635.CrossRefGoogle Scholar
Young, I. R. 1999 Wind Generated Ocean Waves, 1st edn. Elsevier.Google Scholar
Ziegenbein, J. 1969 Short internal waves in the Strait of Gibraltar. Deep Sea Res. Oceanogr. Abstracts 16 (5), 479487.CrossRefGoogle Scholar
Supplementary material: PDF

Hao and Shen supplementary material

Supplementary data
Download Hao and Shen supplementary material(PDF)
PDF 196.5 KB

Hao and Shen supplementary movie 1

Evolution of the surface wave field showing the smooth and rough region
Download Hao and Shen supplementary movie 1(Video)
Video 6.4 MB