Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T04:17:23.799Z Has data issue: false hasContentIssue false

Direct simulation Monte Carlo computations and experiments on leading-edge separation in rarefied hypersonic flow

Published online by Cambridge University Press:  02 October 2019

R. Prakash*
Affiliation:
School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia
L. M. Le Page
Affiliation:
School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia
L. P. McQuellin
Affiliation:
School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia
S. L. Gai
Affiliation:
School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia
S. O’Byrne
Affiliation:
School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia
*
Email address for correspondence: [email protected]

Abstract

A comprehensive study of the fundamental characteristics of leading-edge separation in rarefied hypersonic flows is undertaken and its salient features are elucidated. Separation of a boundary layer undergoing strong expansion is typical in many practical hypersonic applications such as base flows of re-entry vehicles and flows over deflected control surfaces. Boundary layer growth under such conditions is influenced by effects of rarefaction and thermal non-equilibrium, thereby differing significantly from the conventional no-slip Blasius type. A leading-edge separation configuration presents a fundamental case for studying the characteristics of such a flow separation but with minimal influence from a pre-existing boundary layer. In this work, direct simulation Monte Carlo computations have been performed to investigate flow separation and reattachment in a low-density hypersonic flow over such a configuration. Distinct features of leading-edge flow, limited boundary layer growth, separation, shear layer, flow structure in the recirculation region and reattachment are all explained in detail. The fully numerical shear layer profile after separation is compared against a semi-theoretical profile, which is obtained using the numerical separation profile as the initial condition on existing theoretical concepts of shear layer analysis based on continuum flow separation. Experimental studies have been carried out to determine the surface heat flux using thin-film gauges and computations showed good agreement with the experimental data. Flow visualisation experiments using the non-intrusive planar laser-induced fluorescence technique have been performed to image the fluorescence of nitric oxide, from which velocity and rotational temperature distributions of the separated flow region are determined.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. D. Jr 2006 Hypersonic and High-Temperature Gas Dynamics, 2nd edn. AIAA Education Series.Google Scholar
Babinsky, H. & Harvey, J. K. 2013 Shock Wave – Boundary Layer Interactions. Cambridge University Press.Google Scholar
Baum, E., King, H. H. & Deninson, M. R. 1964 Recent studies of the laminar base-flow region. AIAA J. 2 (9), 15271534.Google Scholar
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press.Google Scholar
Bird, G. A. 2011 The DSMC method. CreateSpace Independent Publishing Platform.Google Scholar
Boyd, I. D., Chen, G. & Candler, G. V. 1995 Predicting failure of the continuum fluid equations in transitional hypersonic flows. Phys. Fluids 7 (1), 210219.10.1063/1.868720Google Scholar
Bray, K. N. C. 1959 Atomic recombination in a hypersonic wind-tunnel nozzle. J. Fluid Mech. 6 (1), 132.Google Scholar
Chapman, D. R., Kuehn, D. M. & Larson, H. K.1958 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA Tech. Rep. 1356.Google Scholar
Cheng, H. K., Hall, J. G., Golian, T. C. & Hertzberg, A. 1961 Boundary-layer displacement and leading-edge bluntness effects in high-temperature hypersonic flow. J. Aero. Sci. 28 (5), 353410.Google Scholar
Cohen, C. B. & Reshotko, E.1956 Similar solutions for the compressible laminar boundary layer with heat transfer and pressure gradient. NACA Tech. Rep. 1293.Google Scholar
Cook, W. J. & Felderman, E. J. 1966 Reduction of data from thin-film heat-transfer gages: a concise numerical technique. AIAA J. 4 (3), 561562.Google Scholar
Edney, B. E. 1968 Effects of shock impingement on the heat transfer around blunt bodies. AIAA J. 6 (1), 1521.Google Scholar
Eitelberg, G., McIntyre, T. J. & Beck, W. H. 1992 The high enthalpy shock tunnel in gottingen. In 28th Joint Propulsion Conference and Exhibit.Google Scholar
Gai, S. L. 1992 Free piston shock tunnels: developments and capabilities. Prog. Aerosp. Sci. 29 (1), 141.Google Scholar
Gai, S. L. 2010 Flow behind a step in high-enthalpy laminar hypersonic flow. AIAA J. 48 (7), 15631567.10.2514/1.J050500Google Scholar
Gray, J. D.1965 Laminar boundary-layer separation on flared bodies at supersonic and hypersonic speeds. Tech. Documentary Rep. 64-277.10.21236/AD0609841Google Scholar
Haas, B. L., Hash, D. B., Bird, G. A., Lumpkin, F. E. & Hassan, H. A. 1994 Rates of thermal relaxation in direct simulation Monte Carlo methods. Phys. Fluids 6 (6), 21912201.10.1063/1.868221Google Scholar
Hayne, M. J., Mee, D. J., Morgan, R. G., Gai, S. L. & Mclntyre, T. J. 2003 Heat transfer and flow behind a step in high enthalpy superorbital flow. Aeronaut. J. 107 (1073), 435442.Google Scholar
Holden, M. 1971 Boundary-layer displacement and leading-edge bluntness effects on attached and separated laminar boundary layers in a compression corner. Part II. Experimental study. AIAA J. 9 (1), 8493.Google Scholar
Holden, M. 1978 A study of flow separation in regions of shock wave-boundary layer interaction in hypersonic flow. In 11th Fluid and Plasma Dynamics Conference, AIAA.Google Scholar
Hornung, H. A. N. S., Sturtevant, B., Belanger, J., Sanderson, S., Brouillette, M. & Jenkins, M. 1992 Performance data of the new free-piston shock tunnel T5 at GALCIT. In Shock Waves, pp. 603610. Springer.Google Scholar
Hruschka, R., O’Byrne, S. & Kleine, H. 2010 Two-component doppler-shift fluorescence velocimetry applied to a generic planetary entry probe model. Exp. Fluids 48 (6), 11091120.10.1007/s00348-009-0794-3Google Scholar
Inger, G. R. & Moss, J. N. 2007 Comparison of Navier–Stokes and direct simulation Monte Carlo predictions with separation. AIAA J. 45 (8), 21022105.Google Scholar
Inger, G. R. 1977 On the curvature of compressible boundary layer flows near separation. Z. Angew. Math. Phys. 28 (6), 10271035.Google Scholar
Kaseman, T.2017 Optical studies of leading-edge separation in high-enthalpy, low-density hypersonic flows. PhD thesis, School of Engineering & Information Technology, UNSW Canberra.Google Scholar
Khraibut, A., Gai, S. L., Brown, L. M. & Neely, A. J. 2017 Laminar hypersonic leading edge separation a numerical study. J. Fluid Mech. 821, 624646.Google Scholar
Kinnear, K. & Lu, F. 1998 Design, calibration and testing of transient thin film heat transfer gauges. In 20th AIAA Advanced Measurement and Ground Testing Technology Conference, p. 2504. American Institute of Aeronautics and Astronautics.Google Scholar
Korolev, G. L., Gajjar, J. S. B. & Ruban, A. I. 2002 Once again on the supersonic flow separation near a corner. J. Fluid Mech. 463, 173199.Google Scholar
Kubota, T., Lees, L. & Lewis, J. E. 1968 Experimental investigation of supersonic laminar, two-dimensional boundary-layer separation in a compression corner with and without cooling. AIAA J. 6 (1), 714.Google Scholar
Leite, P. H. M. & Santos, W. F. N. 2014 Computational analysis of the flow field structure of a non-reacting hypersonic flow over forward-facing steps. J. Fluid Mech. 763, 460499.Google Scholar
Le Page, L. M. & O’Byrne, S. 2017 An adaptive sampling algorithm for doppler-shift fluorescence velocimetry in high-speed flows. J. Quant. Spectrosc. Radiat. Transfer 190, 6977.Google Scholar
Lu, F. K. & Marren, D. E. 2002 Advanced Hypersonic Test Facilities. American Institute of Aeronautics and Astronautics.Google Scholar
Mallinson, S. G.1994 Shock wave/boundary layer interaction at a compression corner in hypervelocity flows. PhD thesis, Department of Aerospace and Mechanical Engineering, UNSW-ADFA.Google Scholar
Mallinson, S. G., Gai, S. L. & Mudford, N. R. 1996 Leading-edge bluntness effects in high enthalpy, hypersonic compression corner flow. AIAA J. 34, 22842290.Google Scholar
Markelov, G. N., Kudryavtsev, A. N. & Ivanov, M. S. 2000 Continuum and kinetic simulation of laminar separated flow at hypersonic speeds. J. Spacecr. Rockets 37 (4), 499506.Google Scholar
McIntosh, M. K.1968 Computer program for the numerical calculation of frozen equilibrium conditions in shock tunnels. Technical Report.Google Scholar
Merzkirch, W., Page, R. H. & Fletcher, L. S. 1988 A survey of heat transfer in compressible separated and reattached flows. AIAA J. 26 (2), 144150.10.2514/3.9865Google Scholar
Messiter, A. F., Hough, G. R. & Feo, A. 1973 Base pressure in laminar supersonic flow. J. Fluid Mech. 60 (3), 605624.Google Scholar
Millikan, R. C. & White, D. R. 1963 Systematics of vibrational relaxation. J. Chem. Phys. 39 (12), 32093213.Google Scholar
Moffat, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (1), 118.Google Scholar
Moss, J. N., O’Byrne, S., Deepak, N. R. & Gai, S. L. 2012 Simulations of hypersonic, high-enthalpy separated flow over a ‘tick’ configuration. In 28th International Symposium on Rarefied Gas Dynamics, pp. 14531460. AIP Publishing.Google Scholar
Moss, J. N., O’Byrne, S. & Gai, S. L. 2014 Hypersonic separated flows about ‘tick’ configurations with sensitivity to model design. In AIP Conference Proceedings, pp. 162169. AIP Publishing.Google Scholar
Moss, J. N., Price, J. M. & Chun, C. H. 1991 Hypersonic rarefied flow about a compression corner – DSMC simulation and experiment. In 26th AIAA Thermophysics Conference.Google Scholar
Moss, J. N. & Bird, G. A. 2005 Direct simulation Monte Carlo simulations of hypersonic flows with shock interactions. AIAA J. 43 (12), 25652573.Google Scholar
NCI2017 National Computational Infrastructure Annual Report. Tech. Rep.Google Scholar
Needham, D. & Stollery, J. 1966 Boundary layer separation in hypersonic flow. In 4th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.Google Scholar
Neely, A. J., Stalker, R. J. & Paull, A. 1991 High enthalpy, hypervelocity flows of air and argon in an expansion tube. Aeronaut. J. 95 (946), 175186.Google Scholar
O’Byrne, S.2002 Hypersonic laminar boundary layers and near-wake flows. PhD thesis, Australian National University.Google Scholar
O’Byrne, S., Kaseman, T., Krishna, Y., Gai, S. L., Kleine, H. H. & Neely, A.2014 Leading-edge separation in thermal nonequilibrium hypersonic flow – final report for AOARD grant 134013. SEIT, UNSW-ADFA Grant Report.Google Scholar
Olivier, H., Vetter, M., Jessen, C. & Grönig, H. 1993 Measurements on models for hypersonic real gas conditions. In New Trends in Instrumentation for Hypersonic Research, pp. 471480. Springer.Google Scholar
Oswatitsch, K. 1957 Die Ablosungsbedingung vo Grenzschichten. pp. 357367. Springer.Google Scholar
Palma, P. C.1999 Laser-induced fluorescence imaging in free-piston shock tunnels. PhD thesis, The Australian National University.Google Scholar
Park, G.2010 Hypervelocity aerothermodynamics of blunt bodies including real gas effects. PhD thesis, School of Engineering & Information Technology, UNSW Canberra.Google Scholar
Park, G., Gai, S. L. & Neely, A. J. 2010a Aerothermodynamics behind a blunt body at superorbital speeds. AIAA J. 48 (8), 18041816.Google Scholar
Park, G., Gai, S. L. & Neely, A. J. 2010b Laminar near wake of a circular cylinder at hypersonic speeds. AIAA J. 48 (1), 236248.Google Scholar
Paull, A. & Stalker, R. J. 2001 Scramjet Testing in the T3 and T4 Hypersonic Impulse Facilities. American Institute of Aeronautics and Astronautics.Google Scholar
Plimpton, S. & Gallis, M. 2016 SPARTA Users Manual. Sandia National Laboratories.Google Scholar
Prakash, R., Gai, S. & O’Byrne, S.2015 Numerical study of hypersonic separated flow over an expansion-compression surface. AIAA Paper 2015-3528.Google Scholar
Prakash, R., Gai, S. & O’Byrne, S.2017 DSMC computations of separation over a tick model in hypersonic high enthalpy transitional flows. AIAA Paper 2017-1844.Google Scholar
Prakash, R., Gai, S. & O’Byrne, S. 2018 A direct simulation monte carlo study of hypersonic leading-edge separation with rarefaction effects. Phys. Fluids 30 (6), 063602.10.1063/1.5030931Google Scholar
Sanderson, R. J. 1969 Interpretation of pressure measurements behind the reflected shock in a rectangular shock tube. AIAA J. 7 (7), 13701372.Google Scholar
Schultz, D. L. & Jones, T. V.1973 Heat-transfer measurements in short-duration hypersonic facilities. AGARD Technical Report 165. Advisory Group for Aerospace Research and Development.Google Scholar
Simmons, J. M. 1995 Measurement techniques in high-enthalpy hypersonic facilities. Exp. Therm. Fluid Sci. 10 (4), 454469.Google Scholar
Skeel, R. D. & Berzins, M. 1990 A method for the spatial discretization of parabolic equations in one space variable. SIAM J. Sci. Stat. Comput. 11 (1), 132.10.1137/0911001Google Scholar
Stalker, R. J. 1967 A study of the free-piston shock tunnel. AIAA J. 5 (12), 21602165.10.2514/3.4402Google Scholar
Takahashi, M., Ueda, S., Komuro, T., Sato, K., Tanno, H. & Itoh, K. 1999 Development of a new force measurement method for scramjet testing in a high enthalpy shock tunnel. In 9th International Space Planes and Hypersonic Systems and Technologies Conference, p. 4961. American Institute of Aeronautics and Astronautics.Google Scholar
Tumuklu, O., Levin, D. & Theofilis, V. 2017 On the temporal evolution in laminar separated boundary layer shock-interaction flows using DSMC. In 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum. American Institute of Aeronautics and Astronautics.Google Scholar
Vardavas, I. M. 1984 Modelling reactive gas flows within shock tunnels. Austral. J. Phys. 37, 157177.10.1071/PH840157Google Scholar
Vidal, R. J. 1956 Model Instrumentation Techniques for Heat Transfer and Force Measurements in a Hypersonic Shock Tunnel. Cornell Aeronautical Laboratory.Google Scholar
Wadhams, T. P., Mundy, E., MacLean, M. G. & Holden, M. S. 2008 Ground test studies of the hifire-1 transition experiment part 1: experimental results. J. Spacecr. Rockets 45 (6), 11341148.10.2514/1.38338Google Scholar
Wieting, A. R. 1975 Empirical correlations for heat transfer and flow friction characteristics of rectangular offset-fin plate-fin heat exchangers. Trans. ASME J. Heat Transfer 97 (3), 488490.Google Scholar