Hostname: page-component-55f67697df-bzg56 Total loading time: 0 Render date: 2025-05-11T09:16:26.299Z Has data issue: false hasContentIssue false

Direct numerical simulations of a bump-installed turbulent channel flow for drag reduction by blowing and suction

Published online by Cambridge University Press:  09 May 2025

Yusuke Okochi
Affiliation:
Department of Mechanical Engineering, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
Yusuke Nabae*
Affiliation:
Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
Koji Fukagata
Affiliation:
Department of Mechanical Engineering, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*
Corresponding author: Yusuke Nabae, [email protected]

Abstract

We investigate the drag reduction effects by two representative blowing/suction-based control methods having different drag reduction mechanisms, i.e. the opposition control and uniform blowing (UB), in a bump-installed turbulent channel flow through direct numerical simulations. We consider two different bulk Reynolds numbers ${\textit {Re}}_b = 5600$ and $12\,600$, and bump heights $h^+ \approx 20$ and $40$. In the opposition-controlled case, the friction drag reduction effect in the case with a bump is similar to that in the case without a bump, while the control effect on the pressure drag is hardly observed. The total drag reduction rate decreases for the higher bump height because the ratio of the pressure drag to the total drag increases as the bump height. In the UB case, UB at $0.1\,\%$ or $0.5\,\%$ of the bulk-mean velocity is imposed on the lower wall with a bump, while the same amount of uniform suction (US) is applied on the upper flat wall to keep the mass flow rate. Although the total friction drag increases due to a detrimental effect of US on the upper wall, the wall-normal motions due to the existence of a bump on the lower wall are suppressed by the UB, so that the pressure drag is decreased, unlike the opposition-controlled case. Due to the difference in the inherent drag reduction mechanisms, the flow separation in the region behind the bump is enhanced by the opposition control, while suppressed by UB.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Almeida, G.P., Durao, D.F.G. & Heitor, M.V. 1993 Wake flows behind two-dimensional model hills. Exp. Therm. Fluid Sci. 7 (1), 87101.CrossRefGoogle Scholar
Atzori, M., Vinuesa, R., Fahland, G., Stroh, A., Gatti, D., Frohnapfel, B. & Schlatter, P. 2020 Aerodynamic effects of uniform blowing and suction on a NACA4412 airfoil. Flow Turbul. Combust. 105 (3), 735759.CrossRefGoogle Scholar
Banchetti, J., Luchini, P. & Quadrio, M. 2020 Turbulent drag reduction over curved walls. J. Fluid Mech. 896, A10.CrossRefGoogle Scholar
Breuer, M., Peller, N., Rapp, C. & Manhart, M. 2009 Flow over periodic hills – numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38 (2), 433457.CrossRefGoogle Scholar
Chang, Y., Collis, S.S. & Ramakrishnan, S. 2002 Viscous effects in control of near-wall turbulence. Phys. Fluids 14 (11), 40694080.CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.CrossRefGoogle Scholar
Eto, K., Kondo, Y., Fukagata, K. & Tokugawa, N. 2019 Assessment of friction drag reduction on a Clark-Y airfoil by uniform blowing. AIAA J. 57 (7), 27742782.CrossRefGoogle Scholar
Fournier, G., Laval, J.P., Braud, C. & Stanislas, M. 2010 Numerical simulations of the flow in a converging–diverging channel with control through a spanwise slot. Intl J. Flow Control 2 (4), 289310.CrossRefGoogle Scholar
Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L. & Leschziner, M.A. 2005 Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 1966.CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Hasegawa, Y. 2024 Turbulent drag reduction by streamwise traveling waves of wall-normal forcing. Annu. Rev. Fluid Mech. 56, 6990.CrossRefGoogle Scholar
Fukagata, K., Kasagi, N. & Koumoutsakos, P. 2006 A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18 (5), 051703.CrossRefGoogle Scholar
Gad-el Hak, M. 1994 Interactive control of turbulent boundary layers: a futuristic overview. AIAA J. 32 (9), 17531765.CrossRefGoogle Scholar
Ham, F.E., Lien, F.S. & Strong, A.B. 2002 A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids. J. Comput. Phys. 177 (1), 117133.CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hammond, E.P., Bewley, T.R. & Moin, P. 1998 Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows. Phys. Fluids 10 (9), 24212423.CrossRefGoogle Scholar
Hirokawa, S., Eto, K., Fukagata, K. & Tokugawa, N. 2020 a Experimental investigation on friction drag reduction on an airfoil by passive blowing. J. Fluid Sci. Technol. 15(2), JFST0011.CrossRefGoogle Scholar
Hirokawa, S., Ohashi, M., Eto, K., Fukagata, K. & Tokugawa, N. 2020 b Turbulent friction drag reduction on Clark-Y airfoil by passive uniform blowing. AIAA J. 58 (9), 41784180.CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, Streams, and Convergence Zones in Turbulent Flows. Center for Turbulence Research Report, CTR-S88.Google Scholar
Kajishima, T. 1999 Finite-difference method for convective terms using non-uniform grid. Trans. JSME/B 65 (633), 16071612.CrossRefGoogle Scholar
Kametani, Y. & Fukagata, K. 2011 Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J. Fluid Mech. 681, 154172.CrossRefGoogle Scholar
Kametani, Y., Fukagata, K., Örlü, R. & Schlatter, P. 2015 Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Intl J. Heat Fluid Flow 55, 132142.CrossRefGoogle Scholar
Kametani, Y., Kotake, A., Fukagata, K. & Tokugawa, N. 2017 Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows. Phys. Rev. Fluids 2 (12), 123904.CrossRefGoogle Scholar
Kang, S. & Choi, H. 2000 Active wall motions for skin-friction drag reduction. Phys. Fluids 12 (12), 33013304.CrossRefGoogle Scholar
Kraheberger, S., Hoyas, S. & Oberlack, M. 2018 DNS of a turbulent Couette flow at constant wall transpiration up to $Re_\tau = 1000$ . J. Fluid Mech. 835, 421443.CrossRefGoogle Scholar
Marquillie, M., Ehrenstein, U. & Laval, J.P. 2011 Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205240.CrossRefGoogle Scholar
Miura, S., Ohashi, M., Fukagata, K. & Tokugawa, N. 2022 Drag reduction by uniform blowing on the pressure surface of an airfoil. AIAA J. 60 (4), 22412250.CrossRefGoogle Scholar
Mollicone, J.P., Battista, F., Gualtieri, P. & Casciola, C.M. 2017 Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel. J. Fluid Mech. 823, 100133.CrossRefGoogle Scholar
Mollicone, J.P., Battista, F., Gualtieri, P. & Casciola, C.M. 2022 Superhydrophobic surfaces to reduce form drag in turbulent separated flows. AIP Adv. 12 (7), 075003.CrossRefGoogle Scholar
Mori, E., Quadrio, M. & Fukagata, K. 2017 Turbulent drag reduction by uniform blowing over a two-dimensional roughness. Flow Turbul. Combust. 99, 765785.CrossRefGoogle Scholar
Nabae, Y. & Fukagata, K. 2024 Theoretical and numerical analyses of turbulent plane Couette flow controlled using uniform blowing and suction. Intl J. Heat Fluid Flow 106, 109286.CrossRefGoogle Scholar
Noguchi, D., Fukagata, K. & Tokugawa, N. 2016 Friction drag reduction of a spatially developing boundary layer using a combined uniform suction and blowing. J. Fluid Sci. Technol. 11 (1), JFST0004.CrossRefGoogle Scholar
Ohashi, M., Fukagata, K. & Tokugawa, N. 2021 Adjoint-based sensitivity analysis for airfoil flow control aiming at lift-to-drag ratio improvement. AIAA J. 59 (11), 44374448.CrossRefGoogle Scholar
Ohashi, M., Morita, Y., Hirokawa, S., Fukagata, K. & Tokugawa, N. 2020 Parametric study toward optimization of blowing and suction locations for improving lift-to-drag ratio on a Clark-Y airfoil. J. Fluid Sci. Technol. 15(2), JFST0008.CrossRefGoogle Scholar
Ricco, P., Skote, M. & Leschziner, M.A. 2021 A review of turbulent skin-friction drag reduction by near-wall transverse forcing. Prog. Aerosp. Sci. 123, 100713.CrossRefGoogle Scholar
Spalart, P.R., Moser, R.D. & Rogers, M.M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96 (2), 297324.CrossRefGoogle Scholar
Stroh, A., Hasegawa, Y., Schlatter, P. & Frohnapfel, B. 2016 Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer. J. Fluid Mech. 805, 303321.CrossRefGoogle Scholar
Sumitani, Y. & Kasagi, N. 1995 Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA J. 33 (7), 12201228.CrossRefGoogle Scholar
Temmerman, L., Leschziner, M.A., Mellen, C.P. & Fröhlich, J. 2003 Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. Intl J. Heat Fluid Flow 24 (2), 157180.CrossRefGoogle Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.CrossRefGoogle Scholar
Walsh, M.J. 1983 Riblets as a viscous drag reduction technique. AIAA J. 21 (4), 485486.CrossRefGoogle Scholar
Webster, D.R., DeGraaff, D.B. & Eaton, J.K. 1996 Turbulence characteristics of a boundary layer over a two-dimensional bump. J. Fluid Mech. 320, 5369.CrossRefGoogle Scholar
White, C.M. & Mungal, M.G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40 (1), 235256.CrossRefGoogle Scholar
Wu, X. & Squires, K.D. 1998 Numerical investigation of the turbulent boundary layer over a bump. J. Fluid Mech. 362, 229271.CrossRefGoogle Scholar
Yakeno, A., Kawai, S., Nonomura, T. & Fujii, K. 2015 Separation control based on turbulence transition around a two-dimensional hump at different Reynolds numbers. Intl J. Heat Fluid Flow 55, 5264.CrossRefGoogle Scholar