Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T11:23:21.582Z Has data issue: false hasContentIssue false

Direct numerical simulation of turbulent flow and heat transfer in a spatially developing turbulent boundary layer laden with particles

Published online by Cambridge University Press:  26 April 2018

Dong Li
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
Kun Luo*
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
Jianren Fan
Affiliation:
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China
*
†Email address for correspondence: [email protected]

Abstract

Direct numerical simulations of particle-laden flows in a spatially developing turbulent thermal boundary layer over an isothermally heated wall have been performed with realistic fully developed turbulent inflow boundary conditions. To the authors’ best knowledge, this is the first time the effects of inertial solid particles on turbulent flow and heat transfer in a flat-plate turbulent boundary layer have been investigated, using a two-way coupled Eulerian–Lagrangian method. Results indicate that the presence of particles increases the mean streamwise velocity and temperature gradients of the fluid in the near-wall region. As a result, the skin-friction drag and heat transfer are significantly enhanced in the particle-laden flows with respect to the single-phase flow. The near-wall sweep and ejection motions are suppressed by the particles and hence the Reynolds shear stress and wall-normal turbulent heat flux are attenuated, which leads to reductions in the production of the turbulent kinetic energy and temperature fluctuations. In addition, the coherence and spacing of the near-wall velocity and temperature streaky structures are distinctly increased, while the turbulent vortical structures appear to be disorganized under the effect of the particles. Moreover, the intensity of the streamwise vortices decreases monotonically with increasing particle inertia.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araya, G. & Castillo, L. 2012 DNS of turbulent thermal boundary layers up to Re𝜃 = 2300. Intl J. Heat Mass Transfer 55, 4003–4019.CrossRefGoogle Scholar
Avila, R. & Cervantes, J. 1995 Analysis of the heat transfer coefficient in a turbulent particle pipe flow. Intl J. Heat Mass Transfer 38, 1923–1932.Google Scholar
Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235–263.CrossRefGoogle Scholar
Brodkey, R. S., Wallace, J. M. & Eckelmann, H. 1974 Some properties of truncated turbulence signals in bounded shear flows. J. Fluid Mech. 63, 209–224.CrossRefGoogle Scholar
Crowe, C. T., Schwarzkopf, J. D., Sommerfeld, M. & Tsuji, Y. 2011 Multiphase Flows with Droplets and Particles. CRC Press.Google Scholar
de Giovanetti, M., Hwang, Y. & Choi, H. 2016 Skin-friction generation by attached eddies in turbulent channel flow. J. Fluid Mech. 808, 511–538.Google Scholar
Deck, S., Renard, N., Laraufie, R. & Weiss, P.-É. 2014 Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to 13650. J. Fluid Mech. 743, 202–248.Google Scholar
Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H. 2008 High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227, 7125–7159.Google Scholar
Dritselis, C. D. & Vlachos, N. S. 2008 Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids 20, 055103.Google Scholar
Elghobashi, S. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655–700.Google Scholar
Elghobashi, S. & Truesdell, G. C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids 5, 1790–1801.CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73.CrossRefGoogle Scholar
Fulachier, L. & Dumas, R. 1976 Spectral analogy between temperature and velocity fluctuations in a turbulent boundary layer. J. Fluid Mech. 77, 257–277.Google Scholar
Han, K. S., Sung, H. J. & Chung, M. K. 1991 Analysis of heat transfer in a pipe carrying two-phase gas-particle suspension. Intl J. Heat Mass Transfer 34, 69–78.Google Scholar
Hetsroni, G., Mosyak, A. & Pogrebnyak, E. 2002 Effect of coarse particles on the heat transfer in a particle-laden turbulent boundary layer. Intl J. Multiphase Flow 28, 1873–1894.Google Scholar
Hetsroni, G. & Rozenblit, R. 1994 Heat transfer to a liquid–solid mixture in a flume. Intl J. Multiphase Flow 20, 671–689.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of Summer Program, pp. 193–208. Centre for Turbulence Research, Stanford University.Google Scholar
Jaberi, F. & Mashayek, F. 2000 Temperature decay in two-phase turbulent flows. Intl J. Heat Mass Transfer 43, 993–1005.Google Scholar
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185–212.Google Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995 Particle behavior in the turbulent boundary-layer. 1. motion, deposition, and entrainment. Phys. Fluids 7, 1095–1106.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully-developed channel flow at low Reynolds-number. J. Fluid Mech. 177, 133–166.Google Scholar
Klewicki, J., Ebner, R. & Wu, X. 2011 Mean dynamics of transitional boundary-layer flow. J. Fluid Mech. 682, 617–651.Google Scholar
Kong, H., Choi, H. & Lee, J. S. 2000 Direct numerical simulation of turbulent thermal boundary layers. Phys. Fluids 12, 2555–2568.Google Scholar
Kuerten, J. G. M., van der Geld, C. W. M. & Geurts, B. J. 2011 Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow. Phys. Fluids 23, 123301.Google Scholar
Kulick, J. D., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109–134.Google Scholar
Lee, J., Jung, S. Y., Sung, H. J. & Zaki, T. A. 2013 Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196–225.Google Scholar
Lessani, B. & Nakhaei, M. H. 2013 Large-eddy simulation of particle-laden turbulent flow with heat transfer. Intl J. Heat Mass Transfer 67, 974–983.Google Scholar
Li, D., Luo, K. & Fan, J. 2016a Direct numerical simulation of heat transfer in a spatially developing turbulent boundary layer. Phys. Fluids 28, 105104.CrossRefGoogle Scholar
Li, D., Luo, K. & Fan, J. 2016b Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer. J. Fluid Mech. 802, 359–394.Google Scholar
Li, Q., Schlatter, P., Brandt, L. & Henningson, D. S. 2009 DNS of a spatially developing turbulent boundary layer with passive scalar transport. Intl J. Heat Fluid Flow 30, 916–929.Google Scholar
Li, Y., McLaughlin, J. B., Kontomaris, K. & Portela, L. 2001 Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13, 2957.Google Scholar
Liu, C., Wang, Y., Yang, Y. & Duan, Z. 2016 New omega vortex identification method. Sci. Chin. Phys. Mech. Astronomy 59, 1–9.CrossRefGoogle Scholar
Mansoori, Z., Saffar-Avval, M., Tabrizi, H. B. & Ahmadi, G. 2002 Modeling of heat transfer in turbulent gas–solid flow. Intl J. Heat Mass Transfer 45, 1173–1184.Google Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283–315.Google Scholar
Molerus, O. 1997 Heat transfer in moving beds with a stagnant interstitial gas. Intl J. Heat Mass Transfer 40, 4151–4159.CrossRefGoogle Scholar
Moser, R. & Moin, P.1984 Direct numerical simulation of curved turbulent channel flow. NASA Tech. Memo. No. 85974.Google Scholar
Nakhaei, M. H. & Lessani, B. 2017 Effects of solid inertial particles on the velocity and temperature statistics of wall bounded turbulent flow. Intl J. Heat Mass Transfer 106, 1014–1024.Google Scholar
Nasr, H., Ahmadi, G. & McLaughlin, J. B. 2009 A DNS study of effects of particle–particle collisions and two-way coupling on particle deposition and phasic fluctuations. J. Fluid Mech. 640, 507–536.Google Scholar
Ninto, Y. & Garcia, M. 1996 Experiments on particle – turbulence interactions in the near–wall region of an open channel flow: Implications for sediment transport. J. Fluid Mech. 326, 285–319.Google Scholar
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21, 251–269.Google Scholar
Pan, Y. & Banerjee, S. 1997 Numerical investigation of the effects of large particles on wall-turbulence. Phys. Fluids 9, 3786.Google Scholar
Perot, J. B. 1993 An analysis of the fractional step method. J. Comput. Phys. 108, 51–58.Google Scholar
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2. Phys. Fluids 16, 530.CrossRefGoogle Scholar
Pope, S. B. 2001 Turbulent Flows. Cambridge University Press.Google Scholar
Portela, L. M. & Oliemans, R. V. A. 2003 Eulerian–Lagrangian DNS/LES of particle-turbulence interactions in wall-bounded flows. Int. J. Numer. Methods Fluids 43, 1045–1065.CrossRefGoogle Scholar
Ranz, W. & Marshall, W. 1952 Evaporation from drops. Chem. Engng Prog. 48, 141–146.Google Scholar
Rashidi, M., Hetsroni, G. & Banerjee, S. 1990 Particle-turbulence interaction in a boundary layer. Intl J. Multiphase Flow 16, 935–949.Google Scholar
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149–169.Google Scholar
Sayadi, T., Hamman, C. W. & Moin, P. 2013 Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724, 480–509.Google Scholar
Schlatter, P., ÖrlĂŒ, R., Li, Q., Brethouwer, G., Fransson, J., Johansson, A., Alfredsson, P. & Henningson, D. 2009 Turbulent boundary layers up to Re𝜃 = 2500 studied through simulation and experiment. Phys. Fluids 21, 051702.Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57–108.Google Scholar
Shao, X., Wu, T. & Yu, Z. 2012 Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693, 319–344.Google Scholar
Shukla, R. K., Tatineni, M. & Zhong, X. 2007 Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier–Stokes equations. J. Comput. Phys. 224, 1064–1094.Google Scholar
Simens, M. P., JimĂ©nez, J., Hoyas, S. & Mizuno, Y. 2009 A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228, 4218–4231.Google Scholar
Sommerfeld, M. 2003 Analysis of collision effects for turbulent gas–particle flow in a horizontal channel: Part I. Particle transport. Intl J. Multiphase Flow 29, 675–699.Google Scholar
Sundaram, S. & Collins, L. R. 1999 A numerical study of the modulation of isotropic turbulence by suspended particles. J. Fluid Mech. 379, 105–143.Google Scholar
Vreman, A. W. 2007 Turbulence characteristics of particle-laden pipe flow. J. Fluid Mech. 584, 235–279.Google Scholar
Vreman, A. W. 2015 Turbulence attenuation in particle-laden flow in smooth and rough channels. J. Fluid Mech. 773, 103–136.Google Scholar
Wei, T., Fife, P., Klewicki, J. & McMurtry, P. 2005 Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303–327.Google Scholar
Willmarth, W. & Lu, S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 65–92.Google Scholar
Wu, J.-Z. 2018 Vortex definition and ‘vortex criteria’. Sci. Chin. Phys. Mech. Astronomy 61, 024731.Google Scholar
Wu, X. & Moin, P. 2010 Transitional and turbulent boundary layer with heat transfer. Phys. Fluids 22, 085105.Google Scholar
Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T. & Tsuji, Y. 2001 Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303–334.Google Scholar
Zhao, L. & Andersson, H. I. 2011 On particle spin in two-way coupled turbulent channel flow simulations. Phys. Fluids 23, 093302.Google Scholar
Zhao, L. H., Andersson, H. I. & Gillissen, J. J. J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22, 081702.Google Scholar
Zhao, L. H., Andersson, H. I. & Gillissen, J. J. J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 32–59.Google Scholar
Zonta, F., Marchioli, C. & Soldati, A. 2008 Direct numerical simulation of turbulent heat transfer modulation in micro-dispersed channel flow. Acta Mech. 195, 305–326.Google Scholar
Zonta, F., Marchioli, C. & Soldati, A. 2010 Time behavior of heat fluxes in thermally coupled turbulent dispersed particle flows. Acta Mech. 218, 367–373.Google Scholar