Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T14:02:03.042Z Has data issue: false hasContentIssue false

Direct numerical simulation of turbulence over anisotropic porous media

Published online by Cambridge University Press:  13 October 2017

Y. Kuwata*
Affiliation:
Department of Mechanical Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
K. Suga
Affiliation:
Department of Mechanical Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
*
Email address for correspondence: [email protected]

Abstract

To investigate which component of the anisotropic permeability tensor of porous media influences turbulence over porous walls, direct numerical simulation of anisotropic porous-walled channel flows is performed by the D3Q27 multiple-relaxation-time lattice Boltzmann method. The presently considered anisotropic permeable walls have square pore arrays aligned with the Cartesian axes. Vertical, streamwise and spanwise pore arrays are systematically introduced to the walls to impose anisotropic permeability. Simulations are carried out at a friction Reynolds number of 111 and 230, which is based on the averaged friction velocity of the porous bottom and the smooth top walls. It is found that streamwise and spanwise permeabilities enhance turbulence whilst vertical permeability itself does not. In particular, the enhancement of turbulence is remarkable over porous walls with streamwise permeability. Over streamwise permeable walls, development of high- and low-speed streaks is prevented whilst large-scale intermittent patched patterns of ejection motions are induced. It is revealed by two-point correlation analysis that streamwise permeability allows the development of streamwise large-scale perturbations induced by Kelvin–Helmholtz instability. Spectral analysis reveals that this perturbation contributes to the enhancement of the Reynolds shear stress, leading to significant skin friction of the porous interface. Through the comparison between the two different Reynolds-number cases, it is found that, as the Reynolds number increases, the streamwise perturbation becomes larger and more organized. Consequently, owing to the enhancement of the large-scale perturbation, a significant Reynolds-number dependence of the skin friction of the porous interface can be observed over the streamwise permeable wall. It is also implied that the wavelength of the perturbation can be reasonably scaled by the outer-layer length scale.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bespalko, D., Pollard, A. & Uddin, M. 2012 Analysis of the pressure fluctuations from an LBM simulation of turbulent channel flow. Comput. Fluids 54, 143146.Google Scholar
Beugre, D., Calvo, S., Dethier, G., Crine, M., Toye, D. & Marchot, P. 2010 Lattice Boltzmann 3D flow simulations on a metallic foam. J. Comput. Appl. Maths 234 (7), 21282134.CrossRefGoogle Scholar
Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.Google Scholar
Bushnell, D. M. 1990 Viscous Drag Reduction in Boundary Layers, vol. 123. AIAA.CrossRefGoogle Scholar
Chandesris, M., D’Hueppe, A., Mathieu, B., Jamet, D. & Goyeau, B. 2013 Direct numerical simulation of turbulent heat transfer in a fluid-porous domain. Phys. Fluids 25 (12), 125110.Google Scholar
Chikatamarla, S. S., Frouzakis, C. E., Karlin, I. V., Tomboulides, A. G. & Boulouchos, K. B. 2010 Lattice Boltzmann method for direct numerical simulation of turbulent flows. J. Fluid Mech. 656, 298308.Google Scholar
Chukwudozie, C. & Tyagi, M. 2013 Pore scale inertial flow simulations in 3-D smooth and rough sphere packs using lattice Boltzmann method. AIChE J. 59, 48584870.CrossRefGoogle Scholar
De Lemos, M. J. S. 2012 Turbulence in Porous Media: Modeling and Applications. Elsevier.Google Scholar
D’Humiéres, D., Ginzburg, I., Krafczyk, M., Lallemand, P. & Luo, L.-S. 2002 Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360, 437451.CrossRefGoogle ScholarPubMed
Dimotakis, P. E. & Brown, G. L. 1976 The mixing layer at high Reynolds number: large-structure dynamics and entrainment. J. Fluid Mech. 78 (03), 535560.CrossRefGoogle Scholar
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.CrossRefGoogle Scholar
Franca, M. J., Ferreira, R. M. L & Lemmin, U. 2008 Parameterization of the logarithmic layer of double-averaged streamwise velocity profiles in gravel-bed river flows. Adv. Water Resour. 31 (6), 915925.Google Scholar
Ghisalberti, M. & Nepf, H. 2002 Mixing layers and coherent structures in vegetated aquatic flows. J. Geophys. Res. Oceans 107 (C2), 111.Google Scholar
Goldstein, D., Handler, R. & Sirovich, L. 1995 Direct numerical simulation of turbulent flow over a modelled riblet-covered surface. J. Fluid Mech. 302, 333376.Google Scholar
Hahn, S., Je, J. & Choi, H. 2002 Direct numerical simulation of turbulent channel flow with permeable walls. J. Fluid Mech. 450, 259285.Google Scholar
Hasert, M., Bernsdorf, J. & Roller, S. 2011 Lattice Boltzmann simulation of non-Darcy flow in porous media. Proc. Comput. Sci. 4, 10481057.CrossRefGoogle Scholar
Hatiboglu, C. U. & Babadagli, T. 2008 Pore-scale studies of spontaneous imbibition into oil-saturated porous media. Phys. Rev. E 77, 066311.Google Scholar
He, X. & Luo, L. S. 1997 Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88 (3–4), 927944.CrossRefGoogle Scholar
Huang, C., Shi, B., He, N. & Chai, Z. 2015 Implementation of multi-GPU based lattice Boltzmann method for flow through porous media. Adv. Appl. Math. Mech. 112.Google Scholar
Hurther, D. & Lemmin, U. 2008 Improved turbulence profiling with field-adapted acoustic Doppler velocimeters using a bifrequency Doppler noise suppression method. J. Atmos. Ocean. Technol. 25 (3), 452463.CrossRefGoogle Scholar
Jimenez, J., Uhlmann, M., Pinelli, A. & Kawahara, G. 2001 Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech. 442, 89117.Google Scholar
Jin, Y., Uth, M. F. & Herwig, H. 2015 Structure of a turbulent flow through plane channels with smooth and rough walls: an analysis based on high resolution DNS results. Comput. Fluids 107, 7788.CrossRefGoogle Scholar
Kang, S. K. & Hassan, Y. A. 2013 The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows. J. Comput. Phys. 232 (1), 100117.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kong, F. Y. & Schetz, J. A.1982 Turbulent boundary layer over porous surfaces with different surface geometries. AIAA Paper 82-0030.Google Scholar
Krafczyk, M., Kucher, K., Wang, Y. & Geier, M. 2015 DNS/LES studies of turbulent flows based on the cumulant lattice Boltzmann approach. In High Performance Computing in Science and Engineering ’14, pp. 519531. Springer.Google Scholar
Kuwata, Y. & Suga, K. 2015a Anomaly of the lattice Boltzmann methods in three-dimensional cylindrical flows. J. Comput. Phys. 280, 563569.Google Scholar
Kuwata, Y. & Suga, K. 2015b Large eddy simulations of pore-scale turbulent flows in porous media by the lattice Boltzmann method. Intl J. Heat Fluid Flow 55, 143157.Google Scholar
Kuwata, Y. & Suga, K. 2016a Imbalance-correction grid-refinement method for lattice Boltzmann flow simulations. J. Comput. Phys. 311, 348362.Google Scholar
Kuwata, Y. & Suga, K. 2016b Lattice Boltzmann direct numerical simulation of interface turbulence over porous and rough walls. Intl J. Heat Fluid Flow 61, 145157.Google Scholar
Kuwata, Y. & Suga, K. 2016c Transport mechanism of interface turbulence over porous and rough walls. Flow Turb. Combust. 123.Google Scholar
Lammers, P., Beronov, K. N., Volkert, R., Brenner, G. & Durst, F. 2006 Lattice BGK direct numerical simulation of fully developed turbulence in incompressible plane channel flow. Comput. Fluids 35 (10), 11371153.Google Scholar
Leonardi, S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.Google Scholar
Li, X., Zhang, Y., Wang, X. & Ge, W. 2013 GPU-based numerical simulation of multi-phase flow in porous media using multiple-relaxation-time lattice Boltzmann method. Chem. Engng Sci. 102, 209219.Google Scholar
Manes, C., Poggi, D. & Ridolfi, L. 2011 Turbulent boundary layers over permeable walls: scaling and near-wall structure. J. Fluid Mech. 687, 141170.Google Scholar
Manes, C., Pokrajac, D., McEwan, I. & Nikora, V. 2009 Turbulence structure of open channel flows over permeable and impermeable beds: a comparative study. Phys. Fluids 21 (12), 125109.Google Scholar
Mignot, E., Hurther, D. & Barthelemy, E. 2009 On the structure of shear stress and turbulent kinetic energy flux across the roughness layer of a gravel-bed channel flow. J. Fluid Mech. 638, 423452.Google Scholar
Nield, D. A. & Bejan, A. 2006 Convection in Porous Media, 3rd edn. Springer.Google Scholar
Nikora, V., Goring, D., McEwan, I. & Griffiths, G. 2001 Spatially averaged open-channel flow over rough bed. J. Hydraul. Engng 127 (2), 123133.Google Scholar
Orlandi, P., Leonardi, S. & Antonia, R. A. 2006 Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. J. Fluid Mech. 561, 279305.Google Scholar
Parmigiani, A., Huber, C., Bachmann, O. & Chopard, B. 2011 Pore-scale mass and reactant transport in multiphase porous media flows. J. Fluid Mech. 686, 4076.CrossRefGoogle Scholar
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37 (02), 383413.CrossRefGoogle Scholar
Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D. & Katul, G. G. 2004 The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol. 111 (3), 565587.CrossRefGoogle Scholar
Pokrajac, D. & Manes, C. 2009 Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Trans. Porous Med. 78, 367383.Google Scholar
Raupach, M. R., Finnigan, J. J. & Brunei, Y. 1996 Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78 (3–4), 351382.Google Scholar
Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6 (2), 903923.Google Scholar
Samanta, A., Vinuesa, R., Lashgari, I., Schlatter, P. & Brandt, L. 2015 Enhanced secondary motion of the turbulent flow through a porous square duct. J. Fluid Mech. 784, 681693.Google Scholar
Suga, K., Kuwata, Y., Takashima, K. & Chikasue, R. 2015 A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows. Comput. Maths Applics. 69, 518529.CrossRefGoogle Scholar
Suga, K., Matsumura, Y., Ashitaka, Y., Tominaga, S. & Kaneda, M. 2010 Effects of wall permeability on turbulence. Intl J. Heat Fluid Flow 31, 974984.Google Scholar
Suga, K., Mori, M. & Kaneda, M. 2011 Vortex structure of turbulence over permeable walls. Intl J. Heat Fluid Flow 32, 586595.Google Scholar
Suga, K. & Nishio, Y. 2009 Three dimensional microscopic flow simulation across the interface of a porous wall and clear fluid by the lattice Boltzmann method. Open Transp. Phenom. J. 1, 3544.Google Scholar
Suga, K., Tanaka, T., Nishio, Y. & Murata, M. 2009 A boundary reconstruction scheme for lattice Boltzmann flow simulation in porous media. Prog. Comput. Fluid Dyn. 9, 201207.Google Scholar
Tóth, G. & Jánosi, I. M. 2015 Vorticity generation by rough walls in 2D decaying turbulence. J. Stat. Phys. 161 (6), 15081518.CrossRefGoogle Scholar
Whitaker, S. 1986 Flow in porous media I: a theoretical derivation of Darcy’s law. Trans. Porous Med. 1, 325.Google Scholar
Whitaker, S. 1996 The Forchheimer equation: a theoretical development. Trans. Porous Med. 25, 2761.Google Scholar
White, A. T. & Chong, C. K. 2011 Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice. J. Comput. Phys. 230 (16), 63676378.Google Scholar
Zagni, A. F. E. & Smith, K. V. H 1976 Channel flow over permeable beds of graded spheres. J. Hydraul. Div. ASCE 102 (2), 207222.Google Scholar
Zippe, H. J. & Graf, W. H. 1983 Turbulent boundary-layer flow over permeable and non-permeable rough surfaces. J. Hydraul Res. 21, 5165.CrossRefGoogle Scholar