Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:45:21.269Z Has data issue: false hasContentIssue false

Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns

Published online by Cambridge University Press:  19 January 2016

G. Lodato*
Affiliation:
Normandie Université, CNRS, INSA et Université de Rouen, CORIA UMR6614, 675 Avenue de l’Université, 76801 St. Etienne du Rouvray, France
L. Vervisch
Affiliation:
Normandie Université, CNRS, INSA et Université de Rouen, CORIA UMR6614, 675 Avenue de l’Université, 76801 St. Etienne du Rouvray, France
P. Clavin
Affiliation:
Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR7342, 49 Rue F. Joliot Curie, 13384 Marseille, France
*
Email address for correspondence: [email protected]

Abstract

The reflection on a wavy wall of a planar shock propagating at Mach number 1.5 in air is simulated in a two-dimensional geometry by solving the fully compressible Navier–Stokes equations. A high-order spectral difference numerical discretization is used over an unstructured mesh composed of quadrilateral elements. The shock discontinuity is handled numerically through a specific treatment, which is limited in space to a small portion of the computational cell through which the shock is travelling. In the conditions under investigation, the reflection on the wavy wall leads to a weak and smooth deformation of the shock front without singularities just after reflection. Long-living triple points (Mach stems) are spontaneously formed on the reflected shock at a finite distance from the wavy wall. They then propagate on the front in both directions and collide regularly, forming a periodic cellular pattern quite similar to that of a cellular detonation. Transverse waves, issued from the triple points, are generated in the shocked gas. As a result of their mutual interaction, a complex and strongly unsteady flow is produced in the shocked gas. The topology of the instantaneous streamline patterns is characterized by short-lived critical points that appear intermittently. Due to the compressible character of the unsteady two-dimensional flow, the topology of critical points which can be observed is more diverse than would be expected for incompressible two-dimensional flows. Some of them take the form of short-lived sources or sinks. The mechanism of formation and the dynamics of the triple points, as well as the instantaneous streamline patterns, are analysed in the present paper. The results are useful for deciphering the cellular structure of unstable detonations.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barter, G. E. & Darmofal, D. L. 2010 Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. formulation. J. Comput. Phys. 229 (5), 18101827.CrossRefGoogle Scholar
Ben-Dor, G. 2007 Shock Wave Reflection Phenomena. Springer.Google Scholar
Bhattacharjee, R. R., Lau-Chapdelaine, S. S. M., Maines, G., Maley, L. & Radulescu, M. I. 2013 Detonation re-initiation mechanism following the mach reflection of a quenched detonation. Proc. Combust. Inst. 34 (2), 18931901.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2004 A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194 (1), 194214.CrossRefGoogle Scholar
Bourlioux, A. & Majda, A. J. 1992 Theoretical and numerical structure for unstable two-dimensional detonations. Comput. Fluids 90 (3), 211229.Google Scholar
Briscoe, M. G. & Kovitz, A. A. 1968 Experimental and theoretical study of the stability of plane shock waves reflected normally from perturbed flat walls. J. Fluid Mech. 31 (03), 529546.CrossRefGoogle Scholar
Chacin, J. M. & Cantwell, B. J. 2000 Dynamics of a low Reynolds number turbulent boundary layer. J. Fluid Mech. 404, 87115.CrossRefGoogle Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2 (5), 765777.CrossRefGoogle Scholar
Clavin, P. 2013 Nonlinear analysis of shock–vortex interaction: Mach stem formation. J. Fluid Mech. 721, 324339.CrossRefGoogle Scholar
Clavin, P. & Denet, B. 2002 Diamond patterns in the cellular front of an overdriven detonation. Phys. Rev. Lett. 88 (4), 044502.CrossRefGoogle ScholarPubMed
Clavin, P. & Williams, F. A. 2012 Analytical studies of the dynamics of gaseous detonations. Phil. Trans. R. Soc Lond. A 370 (1960), 597624.Google ScholarPubMed
Courant, R. & Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves. Interscience Publishers.Google Scholar
Denet, B., Biamino, L., Lodato, G., Vervisch, L. & Clavin, P. 2015 Model equation for the dynamics of wrinkled shock waves. comparison with DNS and experiments. Combust. Sci. Technol. 187, 296323.CrossRefGoogle Scholar
D’Yakov, S. P. 1954 The stabiliy of shockwaves: investigation of the problem of stability of shock waves in arbritary media. Zh. Eksp. Teor. Fiz. 27, 288.Google Scholar
Fickett, W. & Davis, W. C. 1979 Detonation. University of California Press.Google Scholar
Freeman, N. C. 1955 A theory of the stability of plane shock waves. Proc. R. Soc. Lond. A 228 (1174), 341362.Google Scholar
Gamezo, V. N., Desbordes, D. & Oran, E. S. 1999 Formation and evolution of two-dimensional cellular detonations. Comput. Fluids 116 (1), 154165.Google Scholar
Gelfand, B. E., Khomik, S. V., Bartenev, A. M., Medvedev, S. P., Grönig, H. & Olivier, H. 2000 Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture. Shock Waves 10 (3), 197204.CrossRefGoogle Scholar
Gottlieb, S. & Shu, C. W. 1998 Total variation diminishing Runge–Kutta schemes. Maths Comput. 67 (221), 7385.CrossRefGoogle Scholar
Guirguis, R., Oran, E. S. & Kailasanath, K. 1986 Numerical simulations of the cellular structure of detonations in liquid nitromethane – regularity of the cell structure. Comput. Fluids 65 (3), 339365.Google Scholar
Harten, A. 1983 High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (3), 357393.CrossRefGoogle Scholar
Hesthaven, J. S. & Warburton, T. 2008 Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Science+Business Media, LLC.CrossRefGoogle Scholar
Izumi, K., Aso, S. & Nishida, M. 1994 Experimental and computational studies focusing processes of shock waves reflected from parabolic reflectors. Shock Waves 3 (3), 213222.CrossRefGoogle Scholar
Jameson, A. 2010 A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45 (1), 348358.CrossRefGoogle Scholar
Jameson, A., Vincent, P. E. & Castonguay, P. 2012 On the non-linear stability of flux reconstruction schemes. J. Sci. Comput. 50 (2), 434445.CrossRefGoogle Scholar
Jourdan, G., Houas, L., Schwaederlé, L., Layes, G., Carrey, R. & Diaz, F. 2004 A new variable inclination shock tube for multiple investigations. Shock Waves 13 (6), 501504.CrossRefGoogle Scholar
Kailasanath, K., Oran, E. S., Boris, J. P. & Young, T. R. 1985 Determination of detonation cell size and the role of transverse waves in two-dimensional detonations. Comput. Fluids 61 (3), 199209.Google Scholar
Kontorovich, V. M. 1957 Concerning the stability of shock waves. Zh. Eksp. Teor. Fiz. 33, 1525.Google Scholar
Kopriva, D. & Kolias, J. 1996 A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125 (1), 244261.CrossRefGoogle Scholar
Kowalczyk, P., Płatkowski, T. & Waluś, W. 2000 Focusing of a shock wave in a rarefied gas: A numerical study. Shock Waves 10 (2), 7793.CrossRefGoogle Scholar
Lapworth, K. C. 1959 An experimental investigation of the stability of plane shock waves. J. Fluid Mech. 6 (03), 469480.CrossRefGoogle Scholar
Lighthill, M. J. 1949 The diffraction of blast. I. Proc. R. Soc. Lond. A 198 (1055), 454470.Google Scholar
Lighthill, M. J. 1950 The diffraction of blast. II. Proc. R. Soc. Lond. A 200 (1063), 554565.Google Scholar
Mahmoudi, Y. & Mazaheri, K. 2015 High resolution numerical simulation of triple point collision and origin of unburned gas pockets in turbulent detonations. Acta Astronaut. 115, 4051.CrossRefGoogle Scholar
Majda, A. & Rosales, R. 1983 A theory for spontaneous mach stem formation in reacting shock fronts, i. the basic perturbation analysis. SIAM J. Appl. Maths 43 (6), 13101334.CrossRefGoogle Scholar
Mazaheri, K., Mahmoudi, Y. & Radulescu, M. I. 2012 Diffusion and hydrodynamic instabilities in gaseous detonations. Combust. Flame 159 (6), 21382154.CrossRefGoogle Scholar
Miller, G. H. & Ahrens, T. J. 1991 Shock-wave viscosity measurement. Rev. Mod. Phys. 63 (4), 919948.CrossRefGoogle Scholar
Oran, E. S., Weber, J. W., Stefaniw, E. I., Lefebvre, M. H. & Anderson, J. D. 1998 A numerical study of a two-dimensional $\text{H}_{2}{-}\text{O}_{2}{-}\text{Ar}$ detonation using a detailed chemical reaction model. Comput. Fluids 113 (1), 147163.Google Scholar
Perry, A. E. & Chong, M. S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19 (1), 125155.CrossRefGoogle Scholar
Persson, P.-O. 2013 Shock capturing for high-order discontinuous galerkin simulation of transient flow problems. AIAA Paper 2013‐3061, 19; 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, Jun. 24–27, 2013.Google Scholar
Persson, P.-O. & Peraire, J. 2006 Sub-cell shock capturing for discontinuous Galerkin methods. AIAA Paper 2006‐112, 113; 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9–12, 2006.Google Scholar
Radulescu, M. I., Sharpe, G. J., Lee, J. H. S., Kiyanda, C. B., Higgins, A. J. & Hanson, R. K. 2005 The ignition mechanism in irregular structure gaseous detonations. Proc. Combust. Inst. 30 (2), 18591867.CrossRefGoogle Scholar
Roe, P. L. 1981 Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357372.CrossRefGoogle Scholar
Shadloo, M. S., Hadjadj, A. & Chaudhuri, A. 2014 On the onset of postshock flow instabilities over concave surfaces. Phys. Fluids 26 (7), 076101.CrossRefGoogle Scholar
Skews, B. W. & Kleine, H. 2007 Flow features resulting from shock wave impact on a cylindrical cavity. J. Fluid Mech. 580, 481493.CrossRefGoogle Scholar
Spiteri, R. J. & Ruuth, S. J. 2002 A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40 (2), 469491.CrossRefGoogle Scholar
Sun, Y., Wang, Z. J. & Liu, Y. 2007 High-order multidomain spectral difference method for the Navier–Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2 (2), 310333.Google Scholar
Taieb, D., Ribert, G. & Hadjadj, A. 2010 Numerical simulations of shock focusing over concave surfaces. AIAA J. 48 (8), 17391747.CrossRefGoogle Scholar
Taki, S. & Fujiwara, T. 1981 Numerical simulation of triple shock behavior of gaseous detonation. Symp. (International) Combust. 18 (1), 16711681; 18th Symposium (International) on Combustion.CrossRefGoogle Scholar