Hostname: page-component-599cfd5f84-56l7z Total loading time: 0 Render date: 2025-01-07T07:03:56.178Z Has data issue: false hasContentIssue false

Direct numerical evidence of stress-induced cavitation

Published online by Cambridge University Press:  11 July 2013

G. Falcucci*
Affiliation:
Department of Technologies, University of Naples ‘Parthenope’, Centro Direzionale - Isola C4, 80143 Naples, Italy
E. Jannelli
Affiliation:
Department of Technologies, University of Naples ‘Parthenope’, Centro Direzionale - Isola C4, 80143 Naples, Italy
S. Ubertini
Affiliation:
DEIM - Industrial Engineering School, University of Tuscia, Largo dell’Universitá s.n.c., 01100, Viterbo, Italy
S. Succi
Affiliation:
Istituto Applicazioni Calcolo, CNR, Via dei Taurini 19, 00185 Rome, Italy
*
Email address for correspondence: [email protected]

Abstract

In this paper direct numerical evidence of flow-induced incipient cavitation is presented through lattice Boltzmann simulations of multiphase flows with a non-ideal thermodynamic equation of state. Cavitation emerges spontaneously as a result of the underlying non-ideal interactions, with no need for any modelling criteria based on the fluid variables, such as pressure or stress tensor. The onset of cavitation is well captured by Joseph’s minimum tension criteria, (Joseph, J. Fluid Mech., vol. 366, 1998, pp. 367–378; Dabiri, Sirignano & Joseph, Phys. Fluids, vol. 19, 2007, 072112), complemented with surface tension corrections, as proposed by Brennen (Cavitation and Bubble Dynamics, Oxford University Press, 1995). The simulations also show that the cavitation number (${C}_{N} $) proves to be a poor predictor of the onset of cavitation. Finally, strong dependence of the bubble morphology on the surface tension is also highlighted.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222 (3), 145197.CrossRefGoogle Scholar
Bremond, N., Arora, M., Ohl, C.-D. & Lohse, D. 2005 Cavitation on surfaces. J. Phys.: Condens. Matter 17, S3603.Google Scholar
Brennen, C. 1995 Cavitation and Bubble Dynamics. Oxford University Press.CrossRefGoogle Scholar
Brujan, E., Ikeda, T. & Matsumoto, Y. 2012 Shock wave emission from a cloud of bubbles. Soft Matt. 8, 57775783.CrossRefGoogle Scholar
Chen, X.-P., Zhong, C.-W. & Yuan, X.-L. 2011 Lattice Boltzmann simulation of cavitating bubble growth with large density ratio. Comput. Maths Applics. 61 (12), 35773584.CrossRefGoogle Scholar
Colosqui, C., Falcucci, G., Ubertini, S. & Succi, S. 2012 Mesoscopic simulation of non-ideal fluids with self-tuning of the equation of state. Soft Matt. 8, 37983809.CrossRefGoogle Scholar
Dabiri, S., Sirignano, W. & Joseph, D. 2007 Cavitation in an orifice flow. Phys. Fluids 19, 072112.CrossRefGoogle Scholar
Darbandi, M. & Sadeghi, H. 2010 Numerical simulation of orifice cavitating flows using two-fluid and three-fluid cavitation models. Numer. Heat Transfer A 58, 505526.CrossRefGoogle Scholar
Epstein, P. & Plesset, M. 1950 On the stability of gas bubbles in liquid gas solutions. J. Chem. Phys. 18, 15051509.CrossRefGoogle Scholar
Falcucci, G., Bella, G., Chiatti, G., Chibbaro, S., Sbragaglia, M. & Succi, S. 2007 Lattice Boltzmann models with mid-range interactions. Commun. Comput. Phys. 2 (6), 10711084.Google Scholar
Falcucci, G., Bella, G., Ubertini, S., Palpacelli, S. & De Maio, A. 2010a Lattice Boltzmann modeling of Diesel spray formation and break-up. SAE Intl J. Fuels Lubr. 3, 582593.CrossRefGoogle Scholar
Falcucci, G., Chibbaro, S., Succi, S., Shan, X. & Chen, H. 2008 Lattice Boltzmann spray-like fluids. Europhys. Lett. 82, 24005.CrossRefGoogle Scholar
Falcucci, G., Ubertini, S., Bella, G. & Succi, S. 2013 Lattice boltzmann simulation of cavitating flows. Commun. Comput. Phys. 13, 685695.CrossRefGoogle Scholar
Falcucci, G., Ubertini, S., Biscarini, C., Di Francesco, S., Chiappini, D., Palpacelli, S., De Maio, A. & Succi, S. 2011 Lattice Boltzmann methods for multiphase flow simulations across scales. Commun. Comput. Phys. 9 (2), 269296.CrossRefGoogle Scholar
Falcucci, G., Ubertini, S. & Succi, S. 2010b Lattice Boltzmann simulations of phase-separating flows at large density ratios: the case of doubly-attractive pseudo-potentials. Soft Matt. 6, 43574365.CrossRefGoogle Scholar
Franc, J.-P. & Michel, J.-M. (Eds) 2005 Fundamentals of Cavitation. Kluwer Academic.CrossRefGoogle Scholar
Gavaises, M., Papoulias, D., Andriotis, A. & Giannadakis, E. 2007 Link between cavitation development and erosion damage in diesel injector nozzles. SAE Tech. Paper 2007-01-0246.CrossRefGoogle Scholar
Giannadakis, E., Gavaises, M. & Arcoumanis, C. 2008 Modelling of cavitation in diesel injector nozzles. J. Fluid Mech. 616, 153193.CrossRefGoogle Scholar
Giannadakis, E., Papoulias, D., Gavaises, M., Arcoumanis, C., Sotieriou, C. & Tang, W. 2007 Evaluation of the predictive capability of Diesel nozzle cavitation models. SAE Tech. Paper 2007-01-0245.CrossRefGoogle Scholar
Hilgenfeldt, A., Brenner, M. P., Grossmann, S. & Lohse, D. 1998 Analysis of the Rayleigh–Plesset dynamics for sonoluminescing bubbles. J. Fluid Mech. 365, 171204.CrossRefGoogle Scholar
Joseph, D. 1998 Cavitation and the state of stress in a flowing liquid. J. Fluid Mech. 366, 367378.CrossRefGoogle Scholar
Koivula, T. 2000 On cavitation in fluid power. In Proceedings of the 1st FPNI-PhD Symp. Hamburg 2000, pp. 371–382.Google Scholar
Kumar, P. & Saini, R. P. 2010 Study of cavitation in hydro turbines – a review. Renewable and Sustainable Energy Reviews 14 (1), 374383.CrossRefGoogle Scholar
Lee, W. & Reitz, R. 2009 Simulation of transient cavitation processes in diesel injectors using kiva with a homogeneous equilibrium model. In Proceedings of the International Multidimensional Engine Modeling User’s Group Meeting, Detroit (MI).Google Scholar
Lohse, D. 2005 Cavitation hots up. Nature 434, 3334.CrossRefGoogle ScholarPubMed
Ohl, C.-D., Arora, M., Ikink, R., de Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006 Sonoporation from jetting cavitation bubbles. Biophys. J. 91, 42854295.CrossRefGoogle ScholarPubMed
Payri, F., Payri, R., Salvador, F. & Martinez-Lopez, J. 2012 A contribution to the understanding of cavitation effects in Diesel injector nozzles through a combined experimental and computational investigation. Comput. Fluids 58, 88101.CrossRefGoogle Scholar
Pecha, R. & Gompf, B. 2000 Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Phys. Rev. Lett. 84, 13281332.CrossRefGoogle ScholarPubMed
Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145185.CrossRefGoogle Scholar
Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Sugiyama, K. & Toschi, F. 2007 Generalized lattice Boltzmann method with multi-range pseudo-potential. Phys. Rev. E 75, 026702.CrossRefGoogle Scholar
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 18151820.CrossRefGoogle ScholarPubMed
Shan, X. & Chen, H. 1994 Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49, 29412948.CrossRefGoogle ScholarPubMed
Succi, S. 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon.CrossRefGoogle Scholar
Sukop, M. C. & Or, D. 2005 Lattice Boltzmann method for homogeneous and heterogeneous cavitation. Phys. Rev. E 71, 046703.CrossRefGoogle ScholarPubMed
Zaleski, S., Li, J. & Succi, S. 1995 Two-dimensional Navier–Stokes simulation of deformation and breakup of liquid patches. Phys. Rev. Lett. 75, 244247.CrossRefGoogle ScholarPubMed
Zhong, M., Zhong, C. & Bai, C. 2012 A high-order discrete scheme of Lattice Boltzmann method for cavitation simulation. Adv. Comput. Sci. Appls 1, 7377.Google Scholar
Zwaan, E., Le Gac, S., Tsuji, K. & Ohl, C.-D. 2007 Controlled cavitation in microfluidic systems. Phys. Rev. Lett. 98, 254501.CrossRefGoogle ScholarPubMed