Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T21:49:28.197Z Has data issue: false hasContentIssue false

Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities

Published online by Cambridge University Press:  10 March 2009

OLIVIER MARQUET
Affiliation:
Departement d'Aerodynamique Fondamentale et Experimentale, ONERA, 92190 Meudon, France
MATTEO LOMBARDI
Affiliation:
Departement d'Aerodynamique Fondamentale et Experimentale, ONERA, 92190 Meudon, France
JEAN-MARC CHOMAZ
Affiliation:
Departement d'Aerodynamique Fondamentale et Experimentale, ONERA, 92190 Meudon, France Laboratoire d'Hydrodynamique (LadHyx), CNRS - Ecole Polytechnique, 91128 Palaiseau, France
DENIS SIPP
Affiliation:
Departement d'Aerodynamique Fondamentale et Experimentale, ONERA, 92190 Meudon, France
LAURENT JACQUIN
Affiliation:
Departement d'Aerodynamique Fondamentale et Experimentale, ONERA, 92190 Meudon, France

Abstract

The stability of the recirculation bubble behind a smoothed backward-facing step is numerically computed. Destabilization occurs first through a stationary three-dimensional mode. Analysis of the direct global mode shows that the instability corresponds to a deformation of the recirculation bubble in which streamwise vortices induce low- and high-speed streaks as in the classical lift-up mechanism. Formulation of the adjoint problem and computation of the adjoint global mode show that both the lift-up mechanism associated with the transport of the base flow by the perturbation and the convective non-normality associated with the transport of the perturbation by the base flow explain the properties of the flow. The lift-up non-normality differentiates the direct and adjoint modes by their component: the direct is dominated by the streamwise component and the adjoint by the cross-stream component. The convective non-normality results in a different localization of the direct and adjoint global modes, respectively downstream and upstream. The implications of these properties for the control problem are considered. Passive control, to be most efficient, should modify the flow inside the recirculation bubble where direct and adjoint global modes overlap, whereas active control, by for example blowing and suction at the wall, should be placed just upstream of the separation point where the pressure of the adjoint global mode is maximum.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akervik, E., Hoepffner, J., Ehrenstein, U. & Henningson, D. S. 2007 Optimal growth, model reduction and control in a separated boundary-layer flow using global modes. J. Fluid Mech. 579, 305314.CrossRefGoogle Scholar
Barkley, D., Gomes, M. G. M. & Henderson, R. D. 2002 Three-dimensional instability in flow over a backward-facing step. J. Fluid Mech. 473, 167190.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.CrossRefGoogle Scholar
Chomaz, J. M. 2005 Global instabilities in spatially developping flows: non-normality and nonlinearity Annu. Rev. Fluid Mech. 37, 357392.CrossRefGoogle Scholar
Chomaz, J. M., Huerre, P. & Redekopp, L. G. 1990 The effect of nonlinearity and forcing on global modes. In New Trends in Nonlinear Dynamcs and Pattern-Forming Phenomena (ed. Coulet, P. & Huerre, P.), p. 259. Plenum.CrossRefGoogle Scholar
Cossu, C. & Chomaz, J. M. 1997 Global measures of local convective instabilities Phys. Rev. Lett. 78, 43874390.Google Scholar
Ding, Y. & Kawahara, M. 1999 Three-dimensional linear stability analysis of incompressible viscous flows using the finite element method Intl J. Numer. Meth. Fluids 31, 451479.Google Scholar
Ehrenstein, U. & Gallaire, F. 2005 On two-dimensional temporal modes in spatially evolving open flows: the flat-plate boundary layer. J. Fluid Mech. 536, 209218.CrossRefGoogle Scholar
Gallaire, F., Marquillie, M. & Ehrenstein, U. 2007 Three-dimensional transverse instabilities in detached boundary layers. J. Fluid Mech. 571, 221233.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2003 Receptivity of the circular cylinder's first instability. Proc. 5th Eur. Fluid Mech. Conf. Toulouse.Google Scholar
Giannetti, F. & Luchini, P. Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167–197.CrossRefGoogle Scholar
Griffith, M. D., Thompson, M. C., Leweke, T., Hourigan, K. & Anderson, W. P. 2007 Wake behaviour and instability of flow through a partially blocked channel. J. Fluid Mech. 582, 319340.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.Google Scholar
Lehoucq, R. B., Masschhoff, K., Sorensen, D. & Yang, C. 1996 ARPACK Software Package, http://www.caam.rice.edu/software/ARPACK/Google Scholar
Lehoucq, R. B., Sorensen, D. C. & Yang, C. 1998 ARPACK Users's Guide. SIAM.CrossRefGoogle Scholar
Marquet, O., Sipp, D., Chomaz, J.-M. & Jacquin, L. 2008 Amplifier and resonator dynamics of a low-Reynolds number recirculation bubble in a global framework. J. Fluid Mech. 605, 429443.CrossRefGoogle Scholar
Maslowe, S. A. & Kelly, R. E. 1970 Finite-amplitude oscillations in a Kelvin-Helmholtz flow. Intl J. Non-Linear Mech. 5, 427435.CrossRefGoogle Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.Google Scholar
Schmid, P. J. & Henningson, D. S. 2002 On the stability of a falling liquid curtain. J. Fluid Mech. 463, 163171.CrossRefGoogle Scholar
Theofilis, V. 2000 Globally unstable flows in open cavities. AIAA Paper 2000-1965.CrossRefGoogle Scholar
Theofilis, V., Hein, S. & Dallmann, U. 2000 On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Phil. Trans. R. Soc. Lond. A 358, 32293246.CrossRefGoogle Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.CrossRefGoogle ScholarPubMed