Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T04:56:43.125Z Has data issue: false hasContentIssue false

The diffusive strip method for scalar mixing in two dimensions

Published online by Cambridge University Press:  06 September 2010

P. MEUNIER*
Affiliation:
Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS, Aix-Marseille Université, 13384 Marseille Cedex 13, France
E. VILLERMAUX
Affiliation:
Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), CNRS, Aix-Marseille Université, 13384 Marseille Cedex 13, France Institut Universitaire de France, 75005 Paris, France
*
Email address for correspondence: [email protected]

Abstract

We introduce a new numerical method for the study of scalar mixing in two-dimensional advection fields. The position of an advected material strip is computed kinematically, and the associated convection–diffusion problem is solved using the computed local stretching rate along the strip, assuming that the diffusing strip thickness is smaller than its local radius of curvature. This widely legitimate assumption reduces the numerical problem to the computation of a single variable along the strip, thus making the method extremely fast and applicable to any large Péclet number. The method is then used to document the mixing properties of a chaotic sine flow, for which we relate the global quantities (spectra, concentration probability distribution functions (PDFs), increments) to the distributed stretching of the strip convoluted by the flow, possibly overlapping with itself. The numerical results indicate that the PDF of the strip elongation is log normal, a signature of random multiplicative processes. This property leads to exact analytical predictions for the spectrum of the field and for the PDF of the scalar concentration of a solitary strip. The present simulations offer a unique way of discovering the interaction rule for building complex mixtures which are made of a random superposition of overlapping strips leading to concentration PDFs stable by self-convolution.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allègre, C. J. & Turcotte, D. L. 1986 Implications of a two-component marble-cake mantle. Nature 323, 123127.CrossRefGoogle Scholar
Alvarez, M. M., Muzzio, F. J., Cerbelli, S., Adrover, A. & Giona, M. 1998 Self-similar spatiotemporal structure of intermaterial boundaries in chaotic flows. Phys. Rev. Lett. 81 (16), 33953398.CrossRefGoogle Scholar
Arnold, V. I. & Avez, A. 1967 Problèmes Ergodiques de la Mécanique Classique. Gauthier-Villars Editeur.Google Scholar
Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in a turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.CrossRefGoogle Scholar
Beigie, D., Leonard, A. & Wiggins, S. 1991 A global study of enhanced stretching and diffusion in cahotic tangles. Phys. Fluids A 3 (5), 10391050.CrossRefGoogle Scholar
Buch, K. A. Jr., & Dahm, W. J. A. 1996 Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. Sc ≫ 1. J. Fluid Mech. 317, 2171.CrossRefGoogle Scholar
Cerbelli, S., Alvarez, M. M. & Muzzio, F. J. 2002 Prediction and quantification of micromixing in laminar flows. AIChE J. 48 (4), 686700.CrossRefGoogle Scholar
Cerbelli, S., Vitacolonna, V., Adrover, A. & Giona, M. 2004 Eigenvalue-eigenfunction analysis of infinitely fast reactions and micromixing in regular and chaotic bounded flows. Chem. Engng Sci. 59, 21252144.CrossRefGoogle Scholar
Corrsin, S. 1952 Simple theory of an idealized turbulent mixer. AIChE J. 3 (3), 329330.CrossRefGoogle Scholar
Danckwerts, P. V. 1952 The definition and measurement of some characteristics of mixtures. Appl. Sci. Res. A 3, 279.CrossRefGoogle Scholar
Dimotakis, P. E. & Catrakis, H. J. 1999 Turbulence, fractals and mixing. In Mixing Chaos and Turbulence (ed. Chaté, H., Villermaux, E. & Chomaz, J. M.). Kluwer Academic/Plenum Publishers.Google Scholar
Duplat, J., Innocenti, C. & Villermaux, E. 2010 A non-sequential turbulent mixing process. Phys. Fluids 22, 035104.CrossRefGoogle Scholar
Duplat, J. & Villermaux, E. 2000 Persistency of material element deformation in isotropic flows and growth rate of lines and surfaces. Eur. Phys. J. B 18, 353361.CrossRefGoogle Scholar
Duplat, J. & Villermaux, E. 2008 Mixing by random stirring in confined mixtures. J. Fluid Mech. 617, 5186.CrossRefGoogle Scholar
Falkovich, G., Gawedzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73 (4), 913975.CrossRefGoogle Scholar
Fannjiang, A., Nonnenmacher, S. & Wolonski, L. 2004 Dissipation time and decay of correlations. Nonlinearity 17, 14811508.CrossRefGoogle Scholar
Fereday, D. R. & Haynes, P. H. 2004 Scalar decay in two-dimensional chaotic advection and batchelor-regime turbulence. Phys. Fluids 16 (12), 43594370.CrossRefGoogle Scholar
Fountain, G. O., Khakhar, D. V. & Ottino, J. M. 1998 Visualization of three-dimensional chaos. Science 281, 683686.CrossRefGoogle ScholarPubMed
Fox, R. O. 2004 Computational Models for Turbulent Reacting Flows. Cambridge University Press.Google Scholar
Gardiner, C. W. 2003 Handbook of Stochastic Methods. Springer.Google Scholar
Graham, R. & Schenzle, A. 1982 Carleman imbedding of multiplicative stochastic processes. Phys. Rev. A 25 (3), 17311754.CrossRefGoogle Scholar
Jones, S. V. 1994 Interaction of chaotic advection and diffusion. Chaos Solitons Fractals 4 (6), 929940.CrossRefGoogle Scholar
Kalda, J. 2000 Simple model of intermittent passive scalar turbulence. Phys. Rev. Lett. 84 (3), 471474.CrossRefGoogle ScholarPubMed
Kraichnan, R. H. 1974 Convection of a passive scalar by a quasi-uniform random straining field. J. Fluid Mech. 64, 737–732.CrossRefGoogle Scholar
Leonard, A. 2009 Overview of turbulent and laminar diffusion and mixing. In Analysis and Control of Mixing with an Application to Micro and Macro Flow Processes (ed. Cortelezzi, L. & Mezic, I.). CISM courses and lectures, vol. 510, Springer.Google Scholar
Levèque, M. A. 1928 Les lois de la transmission de la chaleur par convection. Ann. Mines 13, 201239.Google Scholar
Marble, F. E. 1988 Mixing, diffusion and chemical reaction of liquids in a vortex field. In Chemical Reactivity in Liquids: Fundamental Aspects (ed. Moreau, M. & Turq, P.), pp. 581596. Plenum Press.CrossRefGoogle Scholar
Marble, F. E. & Broadwell, J. E. 1977 The coherent flame model for turbulent chemical reactions. Tech. Rep. TRW-9-PU. Project SQUID.CrossRefGoogle Scholar
Meunier, P. & Villermaux, E. 2003 How vortices mix. J. Fluid Mech. 476, 213222.CrossRefGoogle Scholar
Meunier, P. & Villermaux, E. 2007 Van Hove singularities in probability density functions of scalars. C.R. Méc. 335, 162167.CrossRefGoogle Scholar
Moffatt, H. K. 1983 Transport effects associated with turbulence with particular attention to the influence of helicity. Rep. Prog. Phys. 46, 621664.CrossRefGoogle Scholar
Mohr, W. D., Saxton, R. L. & Jepson, C. H. 1957 Mixing in laminar-flow systems. Indust. Engng Technol. 49 (11), 18551856.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2, The MIT Press.Google Scholar
Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press.Google Scholar
Perugini, D., Ventura, G., Petrelli, M. & Poli, G. 2004 Kinematic significance of morphological structures generated by mixing of magmas: a case study from salina island (southern Italy). Earth Planet. Sci. Lett. 222, 10511066.CrossRefGoogle Scholar
Peters, N. 1984 Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10 (3), 319339.CrossRefGoogle Scholar
Phelps, J. H. & Tucker, C. 2006 Lagrangian particle calculations of distributive mixing: limitations and applications. Chem. Engng Sci. 61, 68266836.CrossRefGoogle Scholar
Ranz, W. E. 1979 Application of a stretch model to mixing, diffusion and reaction in laminar and turbulent flows. AIChE J. 25 (1), 4147.CrossRefGoogle Scholar
Rhines, P. B. & Young, W. R. 1983 How rapidly is a passive scalar mixed within closed streamlines. J. Fluid Mech. 133, 133145.CrossRefGoogle Scholar
Richardson, L. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.Google Scholar
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110, 709737.Google Scholar
Robinson, M., Cleary, P. & Monaghan, J. 2008 Analysis of mixing in a twin cam mixer using smoothed particle hydrodynamics. AIChE J. 54 (8), 19871998.CrossRefGoogle Scholar
Shankar, P. N. & Kidambi, R. 2009 Mixing in internally stirred flows. Proc. R. Soc. Lond. A 465, 12711290.Google Scholar
Sturman, R., Ottino, J. M. & Wiggins, S. 2006 The Mathematical Foundations of Mixing. Cambridge University Press.CrossRefGoogle Scholar
Sukhatme, J. & Pierrehumbert, R. T. 2002 Decay of passive scalars under the action of single scale smooth velocity fields in bounded two-dimensional domains: from non-self-similar probability distribution functions to self-similar eigenmodes. Phys. Rev. E 66, 056302.CrossRefGoogle ScholarPubMed
Thiffeault, J. L., Doering, C. R. & Gibbon, J. D. 2004 A bound on mixing efficiency for the advection diffusion equation. J. Fluid Mech. 521, 105114.CrossRefGoogle Scholar
Toussaint, V., Carrière, P., Scott, J. & Gence, J. N. 2000 Spectral decay of a passive scalar in chaotic mixing. Phys. Fluids 12 (11), 28342844.CrossRefGoogle Scholar
Van Kampen, N. G. 1981 Stochastic Processes in Chemistry and Physics. North-Holland Publishing Company.Google Scholar
Villermaux, E. & Duplat, J. 2003 Mixing as an aggregation process. Phys. Rev. Lett. 91 (18), 184501.CrossRefGoogle ScholarPubMed
Villermaux, E. & Duplat, J. 2006 Coarse grained scale of turbulent mixtures. Phys. Rev. Lett. 97, 144506.CrossRefGoogle ScholarPubMed
Villermaux, E. & Gagne, Y. 1994 Line dispersion in homogeneous turbulence: stretching, fractal dimensions and micromixing. Phys. Rev. Lett. 73 (2), 252255.CrossRefGoogle ScholarPubMed
Villermaux, E. & Rehab, H. 2000 Mixing in coaxial jets. J. Fluid Mech. 425, 161185.CrossRefGoogle Scholar
Villermaux, E., Stroock, A. D. & Stone, H. A. 2008 Bridging kinematics and concentration content in a chaotic micromixer. Phys. Rev. E 77 (1, Part 2).CrossRefGoogle Scholar
Welander, P. 1955 Studies on the general development of motion in a two-dimensional, ideal fluid. Tellus 7 (2), 141156.CrossRefGoogle Scholar
Yeung, P. K. 2002 Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115142.CrossRefGoogle Scholar
Yeung, P. K., Xu, S. & Sreenivasan, K. R. 2002 Schmidt number effects on turbulent transport with uniform mean scalar gradient. Phys. Fluids 14 (12), 41784191.CrossRefGoogle Scholar
Zabusky, N. J., Hughes, M. H. & Roberts, K. V. 1979 Contour dynamics for the euler equations in 2 dimensions. J. Comp. Phys. 30 (1), 96106.CrossRefGoogle Scholar
Zeldovich, Y. B. 1982 Exact solution of the diffusion problem in a periodic velocity field and turbulent diffusion. Dokl. Akad. Nauk SSSR 226 (4), 821826.Google Scholar