Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T13:39:37.020Z Has data issue: false hasContentIssue false

Diffusiophoresis of a charged drop

Published online by Cambridge University Press:  02 August 2018

Fan Yang
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Sangwoo Shin
Affiliation:
Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Howard A. Stone*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

Diffusiophoresis describes the motion of colloids in an electrolyte or non-electrolyte solution where there is a concentration gradient. While most of the studies of diffusiophoresis focus on the motion of solid particles, soft objects such as drops and bubbles are also known to experience diffusiophoresis. Here, we investigate the diffusiophoresis of charged drops in an electrolyte solution both analytically and experimentally. The drop is assumed to remain spherical. An analytical solution of the diffusiophoretic velocity of drops is obtained by perturbation methods. We find that the flow inside the drop is driven by the tangential electric stress at the interface and it directly influences the diffusiophoretic speed of the drop. Using charged oil droplets, we measure the drop speed under solute concentration gradients and find good agreement with the analytical solution. Our findings have potential applications for oil recovery and drug delivery.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. L. 1989 Colloid transport by interface forces. Annu. Rev. Fluid Mech. 21, 6199.Google Scholar
Anderson, J. L. & Prieve, D. C. 1991 Diffusiophoresis caused by gradients of strongly adsorbing solutes. Langmuir 7, 403406.Google Scholar
Banerjee, A., Williams, I., Azevedo, R. N., Helgeson, M. E. & Squires, T. M. 2016 Soluto-inertial phenomena: designing long-range, long-lasting, surface-specific interactions in suspensions. Proc. Natl Acad. Sci. USA 113 (31), 86128617.Google Scholar
Baygents, J. C. & Saville, D. A. 1988 The migration of charged drops and bubbles in electrolyte gradients: diffusiophoresis. Physico-Chem. Hydrodyn. 10, 543560.Google Scholar
Baygents, J. C. & Saville, D. A. 1991 Electrophoresis of drops and bubbles. J. Chem. Soc. Faraday Trans. 87 (12), 18831898.Google Scholar
Booth, F. 1951 The cataphoresis of spherical fluid droplets in electrolytes. J. Chem. Phys. 19, 13311336.Google Scholar
Chew, W. C. & Sen, P. N. 1982 Potential of a sphere in an ionic solution in thin double layer approximations. J. Chem. Phys. 77 (4), 20422044.Google Scholar
Derjaguin, B. V., Sidorenkov, G. P., Zubashchenkov, E. A. & Kiseleva, E. V. 1947 Kinetic phenomena in boundary films of liquids. Kolloidn. Z. 9, 335347.Google Scholar
Derjaguin, B. V., Dukhin, S. S. & Korotkova, A. A. 1961 Diffusiophoresis in electrolyte solutions and its role in the mechanism of the formation of films from rubber latexes by the method of ionic deposition. Kolloidn. Z. 23, 5358.Google Scholar
Edwards, D. A., Brenner, H. & Wasan, D. T. 1991 Interfacial Transport Processes and Rheology. Butterworth-Heinemann.Google Scholar
Florea, D., Musa, S., Huyghe, J. M. R. & Wyss, H. M. 2014 Long-range repulsion of colloids driven by ion exchange and diffusiophoresis. Proc. Natl Acad. Sci. USA 111 (18), 65546559.Google Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Noordhoff International Publishing.Google Scholar
Jordan, D. O. & Taylor, A. J. 1952 The electrophoretic mobilities of hydrocarbon droplets in water and dilute solutions of ethyl alcohol. Trans. Faraday Soc. 48, 346355.Google Scholar
Kar, A., Chiang, T., Rivera, I. O., Sen, A. & Velegol, D. 2015 Enhanced transport into and out of dead-end pores. ACS Nano 9 (1), 746753.Google Scholar
Khair, A. S. & Squires, T. M. 2009 The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys. Fluids 21, 042001.Google Scholar
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.Google Scholar
Lou, J. & Lee, E. 2008 Diffusiophoresis of concentrated suspensions of liquid drops. J. Phys. Chem. C 112, 1245512462.Google Scholar
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2016 Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop. Phys. Rev. E 93, 043127.Google Scholar
Ohshima, H. & Healy, T. W. 1984 Electrokinetic phenomena in a dilute suspension of charged mercury drops. J. Chem. Soc. Faraday Trans. 2 80, 16431667.Google Scholar
Pawar, Y., Solomentsev, Y. E. & Anderson, J. L. 1993 Polarization effects on diffusiophoresis in electrolyte gradients. J. Colloid Interface Sci. 155, 488498.Google Scholar
Prieve, D. C., Anderson, J. L., Ebel, J. P. & Lowell, M. E. 1984 Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 148, 247269.Google Scholar
Prieve, D. C. & Roman, R. 1987 Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. J. Chem. Soc. Faraday Trans. 2 83 (8), 12871306.Google Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2014 Electrophoresis of bubbles. J. Fluid Mech. 753, 4979.Google Scholar
Shin, S., Ault, J. T., Feng, J., Warren, P. B. & Stone, H. A. 2017a Low-cost zeta potentiometry using solute gradients. Adv. Mater. 29, 1701516.Google Scholar
Shin, S., Shardt, O., Warren, P. B. & Stone, H. A. 2017b Membraneless water filtration using CO2 . Nat. Commun. 8, 15181.Google Scholar
Shin, S., Um, E., Sabass, B., Ault, J. T., Rahimi, M., Warren, P. B. & Stone, H. A. 2016 Size-dependent control of colloid transport via solute gradients in dead-end channels. Proc. Natl Acad. Sci. USA 113 (2), 257261.Google Scholar
Stebe, K. J. & Maldarelli, C. 1994 Remobilizing surfactant retarded fluid particle interfaces: II. Controlling the surface mobility at interfaces of solutions containing surface active components. J. Colloid Interface Sci. 163, 177189.Google Scholar
Velegol, D., Garg, A., Guha, R., Kar, A. & Kumar, M. 2016 Origins of concentration gradients for diffusiophoresis. Soft Matt. 12 (21), 46864703.Google Scholar
Yadav, V., Freedman, J. D., Grinstaff, M. & Sen, A. 2013 Bone-crack detection, targeting, and repair using ion gradients. Angew. Chem. Intl Ed. Engl. 52, 1099711001.Google Scholar