Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T05:08:00.207Z Has data issue: false hasContentIssue false

Diffusion-induced bias in near-wall velocimetry

Published online by Cambridge University Press:  19 April 2007

REZA SADR
Affiliation:
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology Savannah, Savannah, GA 31407, USA
CHRISTEL HOHENEGGER
Affiliation:
Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA
HAIFENG LI
Affiliation:
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA
PETER J. MUCHA
Affiliation:
Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA Institute for Advanced Materials, University of North Carolina, Chapel Hill, NC 27599-3290, USA
MINAMI YODA
Affiliation:
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA

Abstract

The Brownian fluctuations of the colloidal tracers often used in microscale velocimetry are typically isotropic in the bulk. In the near-wall region, however, these fluctuations are strongly affected by the hydrodynamic interaction with the wall and by the no-flux condition imposed by the wall. These wall effects can, under appropriate conditions, bias measurements based on colloidal tracers, potentially leading to significant overestimation of near-wall velocities. We use a Fokker–Planck description to generate probability density functions of the distances from a single wall sampled by the matched particles that are present in the same window at both the start and end of a time interval. The importance of the resulting bias for experimental parameters is then quantified in terms of the size of the imaged region and measurement interval. We conclude with a brief discussion of the implications for near-wall velocimetry measurements.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrat, J.-L. & Bocquet, L. 1999 Influence of wetting properties on hydrodynamic boundary conditions at fluid/solid interface. Faraday Disc. 112, 119128.CrossRefGoogle Scholar
Bevan, M. A. & Prieve, D. C. 2000 Hindered diffusion of colloidal particles very near to a wall: revisted. J. Chem. Phys. 113, 12281236.CrossRefGoogle Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16, 242251.CrossRefGoogle Scholar
Choi, C.-H., Westin, K. J. A. & Breuer, K. S. 2003 Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15, 28972902.CrossRefGoogle Scholar
Churaev, N. V., Sobolev, V. D. & Somov, A. N. 1984 Slippage of liquids over lyophobic solid surfaces. J. Colloid Interface Sci. 97, 574581.CrossRefGoogle Scholar
Clark, A. T., Lal, M. & Watson, G. M. 1987 Dynamics of colloidal particles in the vicinity of an interacting surface. Faraday Disc. 83, 179191.CrossRefGoogle Scholar
Craig, V. S. J., Neto, C. & Williams, D. R. M. 2001 Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett. 87, 054504/1–4.CrossRefGoogle Scholar
Einstein, A. 1905 Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik 17, 549560.CrossRefGoogle Scholar
Ermak, D. L. & McCammon, J. A. 1978 Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69, 13521360.CrossRefGoogle Scholar
Galea, T. M. & Attard, P. 2004 Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow. Langmuir 20, 34773482.CrossRefGoogle ScholarPubMed
Goldman, A. J., Cox, R. G. & Brenner, H. 1967 Slow viscous motion of a sphere parallel to a plane wall - II: Couette flow. Chem. Engng Sci. 22, 653660.CrossRefGoogle Scholar
Higham, D. J. 2001 An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525546.CrossRefGoogle Scholar
Hohenegger, C. 2006 Small scale stochastic dynamics for particle image velocimetry applications. PhD thesis, Georgia Institute of Technology.Google Scholar
Joseph, P. & Tabeling, P. 2005 Direct measurement of the apparent slip length. Phys. Rev. E 71, 035303.Google ScholarPubMed
Koplik, J., Banavar, J. R. & Willemsen, J. F. 1989 Molecular dynamics of fluid flow at solid surfaces. Phys. Fluids A 1, 781794.CrossRefGoogle Scholar
Lanczos, C. 1997 Linear Differential Operators. Dover Publications (reprint).Google Scholar
Lauga, E. 2004 Apparent slip due to the motion of suspended particles in flows of electrolyte solutions. Langmuir 20, 89248930.CrossRefGoogle Scholar
Li, H., Sadr, R. & Yoda, M. 2006 Multilayer nano-particle image velocimetry. Exps. Fluids 41, 185194.CrossRefGoogle Scholar
Lum, C. 2005 An experimental study of pressure- and electroosmotically-driven flows in microchannels with surface modifications. PhD thesis, Michigan State University.Google Scholar
Lumma, D., Best, A., Gansen, A., Feuillebois, F., Rädler, J. O. & Vinogradova, O. I. 2003 Flow profile near a wall measured by double-focus fluorescence cross-correlation. Phys. Rev. E 67, 056313.Google Scholar
Maynes, D. & Webb, A. R. 2002 Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry. Exps. Fluids 32, 315.CrossRefGoogle Scholar
Pit, R., Hervet, H. & Léger, L. 2000 Direct experimental evidence of slip in hexadecane: solid interfaces. Phys. Rev. Lett. 85, 980983.CrossRefGoogle ScholarPubMed
Pouya, S., Koochesfahani, M., Snee, P., Bawendi, M. & Nocera, D. 2005 Single quantum dot (QD) imaging of fluid flow near surfaces. Exps. Fluids 39, 784786.CrossRefGoogle Scholar
Sadr, R., Li, H. & Yoda, M. 2005 a Bias due to hindered Brownian diffusion in near-wall velocimetry. Proc. 6th Intl Symp. on Particle Image Velocimetry, Pasadena, CA.Google Scholar
Sadr, R., Li, H. & Yoda, M. 2005 b Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination. Exps. Fluids 38, 9098.CrossRefGoogle Scholar
Sadr, R., Yoda, M., Zheng, Z. & Conlisk, A. T. 2004 An experimental study of electro-osmotic flow in rectangular microchannels. J. Fluid Mech. 506, 357367.CrossRefGoogle Scholar
Saffman, P. G. 1962 The effect of wind shear on horizontal spread from an instantaneous ground source. Q. J. R. Met. Soc. 88, 382393.CrossRefGoogle Scholar
Thompson, P. A. & Troian, S. M. 1997 A general boundary condition for liquid flow at solid surfaces. Nature 389, 360362.CrossRefGoogle Scholar
Tretheway, D. C. & Meinhart, C. D. 2002 Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14, L9L12.CrossRefGoogle Scholar
Watanabe, K., Udagawa, Y. & Udagawa, H. 1999 Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech. 381, 225238.CrossRefGoogle Scholar
Zhu, Y. & Granick, S. 2001 Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87, 96105.CrossRefGoogle ScholarPubMed
Zhu, Y. & Granick, S. 2002 No-slip boundary condition switches to partial slip when fluid contains surfactant. Langmuir 18, 1005810063.CrossRefGoogle Scholar