Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T21:44:52.861Z Has data issue: false hasContentIssue false

A diffuse-interface model for electrowetting drops in a Hele-Shaw cell

Published online by Cambridge University Press:  15 October 2007

H.-W. LU
Affiliation:
Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA 90095, USA
K. GLASNER
Affiliation:
Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
A. L. BERTOZZI
Affiliation:
Department of Mathematics, UCLA, Los Angeles, CA 90095, USA
C.-J. KIM
Affiliation:
Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA 90095, USA

Abstract

Electrowetting has recently been explored as a mechanism for moving small amounts of fluids in confined spaces. We propose a diffuse-interface model for drop motion, due to electrowetting, in a Hele-Shaw geometry. In the limit of small interface thickness, asymptotic analysis shows that the model is equivalent to Hele-Shaw flow with a voltage-modified Young–Laplace boundary condition on the free surface. We show that details of the contact angle significantly affect the time scale of motion in the model. We measure receding and advancing contact angles in the experiments and derive their influence through a reduced-order model. These measurements suggest a range of time scales in the Hele-Shaw model which include those observed in the experiment. The shape dynamics and topology changes in the model agree well with the experiment, down to the length scale of the diffuse-interface thickness.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, J. W., Blowey, J. F. & Garcke, H. 1999 Finite element approximation of the Cahn–Hilliard equation with degerate mobility. SIAM J. Numer. Anal. 37, 286318.Google Scholar
Bensimon, D., Kadanoff, L. P., Liang, S. & Shraiman, S. 1986 Viscous flow in two dimensions. Rev. Mod. Phys. 58, 977999.CrossRefGoogle Scholar
Berg, J. C. (Ed.) 1993 Wettability. Marcel Dekker.Google Scholar
Bretherton, F. P. 1961 The motion of long bubble in tubes. J. Fluid Mech. 10, 166188.CrossRefGoogle Scholar
Caginalp, G. & Fife, P. 1988 Dynamics of layered interfaces arising from phase boundaries. SIAM J. Appl. Maths 48, 506518.CrossRefGoogle Scholar
Carrillo, L., Soriano, J. & Ortin, J. 1999 Radial displacement of a fluid annulus in a rotating Hele-Shaw cell. Phys. Fluids 11, 778785.Google Scholar
Carrillo, L., Soriano, J. & Ortin, J. 2000 Interfacial instabilities of a fluid annulus in a rotating Hele-Shaw cell. Phys. Fluids 12, 16851698.Google Scholar
Chen, J. Z., Troian, S. M., Darhuber, A. A. & Wagner, S. 2005 Effect of contact angle hysteresis on thermocapillary droplet actuation. J. Appl. Phys. 97, 014906.Google Scholar
Cho, S. K., Moon, H., Fowler, J., Fan, S.-K. & Kim, C.-J. 2001 Splitting a liquid droplet for electrowetting-based microfluidics. In Proc. ASME IMECE, Paper. 2001–23831.Google Scholar
Cho, S.-K., Moon, H. & Kim, C.-J. 2003 Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12, 7080.Google Scholar
Constantin, P., Dupont, T. F., Goldstein, R. E., Kadanoff, L. P., Shelley, M. J. & Zhou, S.-M. 1993 Droplet breakup in a model of the Hele-Shaw cell. Phys. Rev. E 47, 41694181.Google Scholar
Darhuber, A. & Troian, S. M. 2005 Principles of microfluidic actuation by manipulation of surface stresses. Annu. Rev. Fluid Mech. 37, 425455.Google Scholar
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.CrossRefGoogle Scholar
Dussan, V. E. B. 1979 On the spreading of liquid on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371400.Google Scholar
Ford, M. L. & Nadim, A. 1994 Thermocapillary migration of an attached drop on a solid surface. Phys. Fluids 6, 31833185.CrossRefGoogle Scholar
Glasner, K. 2001 Nonlinear preconditioning for diffuse interfaces. J. Comput. Phys. 174, 695711.Google Scholar
Glasner, K. 2003 A diffuse interface approach to Hele-Shaw flow. Nonlinearity 16, 4966.Google Scholar
Grun, G. & Rumpf, M. 2000 Nonnegativity preserving convergent schemes for the thin film equation. Numer. Maths 87, 113152.Google Scholar
Hayes, R. A. & Feenstra, B. J. 2003 Video-speed electronic paper based on electrowetting. Nature 425, 383385.CrossRefGoogle ScholarPubMed
Hele-Shaw, H. J. S. 1898 The flow of water. Nature 58, 3436.CrossRefGoogle Scholar
Homsy, G. M. 1987 Viscous fingering in porous media. Annu Rev. Fluid Mech. 19, 271311.CrossRefGoogle Scholar
Hou, T., Lowengrub, J. S. & Shelley, M. J. 1994 Removing the stiffness from interfacial flow with surface-tension. J. Comput. Phys. 114, 312338.CrossRefGoogle Scholar
Howison, S. D. 1992 Complex variable methods in Hele-Shaw moving boundary problems. Eur. J. Appl. Maths 3, 209224.Google Scholar
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid-liquid-fluid contact line. J. Colloid Interface Sci. 35, 85101.CrossRefGoogle Scholar
Joanny, J.-F. & Robbins, M. 1990 Motion of a contact line on a heterogenous surface. J. Chem. Phys. 92, 32063212.CrossRefGoogle Scholar
Kang, K. H. 2002 How electrostatic fields change contact angle in electrowetting. Langmuir 18, 1031810322.Google Scholar
Kim, C.-J. 2000 Microfluidics using the surface tension force in microscale. In SPIE Symp. Micromachining and Microfabrication, vol. 4177, pp. 49–55. Santa Clara, CA.CrossRefGoogle Scholar
Kohn, R. V. & Otto, F. 1997 Small surface energy, coarse-graining, and selection of microstructure. Physica D 107, 272289.Google Scholar
Lee, H., Lowengrub, J. S. & Goodman, J. 2002 a Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14, 492513.Google Scholar
Lee, J. & Kim, C.-J. 1998 Liquid micromotor driven by continuous electrowetting. In IEEE Micro ElectroMechanical Systems Workshop, pp. 538–543, Heidelberg, Germany.Google Scholar
Lee, J., Moon, H., Fowler, J., Schoellhammer, J. & Kim, C.-J. 2001 Addressable micro liquid handling by electric control of surface tension. In Proc. IEEE Conf. Micro ElectroMechanical Systems, pp. 499–502, Interlaken, Switzerland.Google Scholar
Lee, J., Moon, H., Fowler, J., Schoellhammer, J. & Kim, C.-J. 2002 b Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensors Actuators A 95, 259268.Google Scholar
Lippman, M. G. 1875 Relations entre les phènoménes électriques et capillaires. Ann. Chim. Phys. 5, 494548.Google Scholar
Moon, H., Cho, S.-K., Garrel, R. L. & Kim, C.-J. 2002 Low voltage electrowetting-on-dielectric. J. Appl. Phys. 92, 40804087.CrossRefGoogle Scholar
Mugele, M. & Baret, J.-C. 2005 Electrowetting: from basics to applications. J. Phys.: Condens. Matter 17, R705R774.Google Scholar
Otto, F. 1998 Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory. Arch. Rat. Mech. Anal. 141, 63103.CrossRefGoogle Scholar
Park, C.-W. & Homsy, G. M. 1984 Two-phase displacement in Hele-Shaw cells: theory. J. Fluid Mech. 139, 291308.CrossRefGoogle Scholar
Paterson, A. & Fermigier, M. 1997 Wetting on heterogeneous surfaces: Influence of defect interactions. Phys. Fluids 9, 22102216.Google Scholar
Paterson, A., Fermigier, M. & Limat, L. 1995 Wetting on heterogeneous surfaces: Experiments in an imperfect hele-shaw cell. Phys. Rev. E 51, 12911298.Google Scholar
Pego, R. L. 1989 Front migration in the nonlinear cahn hilliard equation. Proc. R. Soc. Lond. A 422, 261278.Google Scholar
Peykov, V., Quinn, A. & Ralston, J. 2000 Electrowetting: a model for contact-angle saturation. Colloid Polym. Sci. 278, 789793.Google Scholar
Pismen, L. M. & Pomeau, Y. 2004 Mobility and interactions of weakly nonwetting droplets. Phys. Fluids 16, 26042612.Google Scholar
Pollack, M. G., Fair, R. B. & Shenderov, A. D. 2000 Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett 77, 17251726.CrossRefGoogle Scholar
Pomeau, Y. 2002 Recent progress in the moving contact line problem: a review. C. R. Mechanique 330, 207222.Google Scholar
Reinelt, D. A. 1987 Interface conditions for two-phase displacement in Hele-Shaw cells. J. Fluid Mech. 184, 219234.CrossRefGoogle Scholar
Saffman, P. G. 1986 Viscous fingering in Hele-Shaw cells. J. Fluid Mech. 173, 7394.Google Scholar
Saffman, P. G. & Taylor, G. I. 1959 A note on the motion of bubbles in a Hele-Shaw cell and porous medium. Q. J. Mech. Appl. Maths 12, 265279.Google Scholar
Seppecher, P. 1996 Moving contact lines in the Cahn-Hilliard theory. Intl J. Engng Sci. 34, 977992.Google Scholar
Seyrat, E. & Hayes, R. A. 2001 Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting. J. Appl. Phys. 90, 13831386.Google Scholar
Shapiro, B., Moon, H., Garrell, R. L. & Kim, C.-J. 2003 Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. J. Appl. Phys. 93, 57945811.Google Scholar
Smereka, P. 2003 Semi-implicit level-set method for curvature and surface diffusion motion. J. Sci. Comput. 19, 439456.Google Scholar
Tanveer, S. 2000 Surprises in viscous fingering. J. Fluid Mech. 409, 273308.CrossRefGoogle Scholar
Vallet, M., Vallade, M. & Berge, B. 1999 Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur. Phys. J. B 11, 583591.CrossRefGoogle Scholar
Verheijen, H. J. J. & Prins, M. W. J. 1999 Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15, 66166620.Google Scholar
Vollmayr-Lee, B. P. & Rutenberg, A. D. 2003 Fast and accurate coarsening simulation with an unconditionally stable time step. Phys. Rev. E 68, 066703.CrossRefGoogle ScholarPubMed
Walker, S. & Shapiro, B. 2006 Modeling the fluid dynamics of electro-wetting on dielectric (EWOD). J. Microelectromech. Syst. 15, 9861000.Google Scholar
Weinstein, S. J., Dussan, V. E. B. & Ungar, L. H. 1990 A theoratical study of two-phase flow through a narrow gap with a moving contact line: viscous fingerin in a Hele-Shaw cell. J. Fluid Mech. 221, 5376.Google Scholar
Witelski, T. P. & Bowen, M. 2003 Adi schemes for higher-order nonlinear diffusion equations. Appl. Numer. Math. 45, 331351.CrossRefGoogle Scholar
Yeo, L. Y. & Chang, C. H. 2006 Electrowetting films on parallel line electrodes. Phys. Rev. E 73, 011605011616.Google ScholarPubMed
Zhornitskaya, L. & Bertozzi, A. L. 2000 Positivity-preserving numerical schemes for lubrication-type equations. SIAM J. Numer. Anal. 37, 523555.CrossRefGoogle Scholar