Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T06:50:31.051Z Has data issue: false hasContentIssue false

The diffraction of tides by a narrow channel

Published online by Cambridge University Press:  29 March 2006

V. T. Buchwald
Affiliation:
School of Mathematics, University of New South Wales

Abstract

A Green's function for a semi-infinite rotating ocean of uniform depth is obtained, and the resulting near and far fields are estimated asymptotically.

Given a tide of uniform height at the mouth of a narrow channel on a semiinfinite ocean, the Green's function is used to calculate the diffracted Kelvin and Poincaré waves propagating up the channel and into the ocean.

Type
Research Article
Copyright
© 1971 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campbell, G. A. & Foster, R. M. 1948 Fourier Integrals. Van Nostrand.
Erdelyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. 1954 Tobles of Integral Transforms, vol. I. Bateman Manuscript Project. McGraw Hill.
Miles, J. W. & Munk, W. H. 1961 J. Waterways and Harbors, Proc. A.S.C.E. 87, 111129.
Munk, W. H., Snodgrass, F. & Wimbush, M. 1970 Geophys. Fluid Dynamics, 1, 161235.
Packham, B. A. & Williams, W. E. 1968 J. Fluid Mech. 34, 517530.
Proudman, J. 1925 Mon. Not. Roy. Astron. Soc. (Geophys Supp.) 1, 247270.
Seshadri, S. R. 1962 I.R.E. Trans. MTT-10, 573.
Williams, W. E. 1964 Proc. I.E.E. 111, 16931695.
Voit, S. S. 1958 Isvestia AS USSR (Geophys. Series) 4, 486496.