Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-06T02:19:00.540Z Has data issue: false hasContentIssue false

Dewetting of liquid film via vapour-mediated Marangoni effect

Published online by Cambridge University Press:  07 June 2019

Seungho Kim
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
Joonoh Kim
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea
Ho-Young Kim*
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea
*
Email address for correspondence: [email protected]

Abstract

Liquid films on wettable solid surfaces can be disturbed to dewet when low surface tension liquids or surfactants are added because the surface tension difference gives rise to stresses on the film interface. Here we consider an alcohol drop placed above a thin aqueous film, which punctures a hole in the film starting from underneath the alcohol drop. Such film dewetting is attributed to the Marangoni effects caused by the spatial gradient of alcohol vapour concentration. We measure the liquid–gas interfacial tension of aqueous liquids rapidly responding to the surrounding isopropyl alcohol vapour concentration, and observe evolution of the film morphology consisting of central hole, fringe film, thinning region and bulk. We construct scaling laws to predict the dewetting rates of the film by considering the Marangoni stress, viscous shear stress and evaporation. It is shown that our experiments are consistent with our theory.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bangham, D. H. & Saweris, Z. 1938 The behaviour of liquid drops and adsorbed films at cleavage surfaces of mica. Trans. Faraday Soc. 34, 554570.Google Scholar
Baret, J. F. 1968 Kinetics of adsorption from a solution. Role of the diffusion and of the adsorption-desorption antagonism. J. Phys. Chem. 72, 27552758.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Berendsen, C. W. J., Zeegers, J. C. H., Kruis, G. C. F. L., Riepen, M. & Darhuber, A. A. 2012 Rupture of thin liquid films induced by impinging air-jets. Langmuir 28, 99779985.Google Scholar
Berg, S. 2009 Marangoni-driven spreading along liquid–liquid interfaces. Phys. Fluids 21, 032105.Google Scholar
Berteloot, G., Hoang, A., Daerr, A., Kavehpour, H. P., Lequeux, F. & Limat, L. 2012 Evaporation of a sessile droplet: inside the coffee stain. J. Colloid Interface Sci. 370, 155161.Google Scholar
Berteloot, G., Pham, C.-T., Daerr, A., Lequeux, F. & Limat, L. 2008 Evaporation-induced flow near a contact line: consequences on coating and contact angle. Europhys. Lett. 83, 14003.Google Scholar
Bonaccurso, E., Kappl, M. & Butt, H.-J. 2002 Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects. Phys. Rev. Lett. 88, 076103.Google Scholar
Brunjes, A. S. & Bogart, M. J. P. 1943 Vapor-liquid equilibria for commercially important systems of organic solvents: the binary systems ethanol-n-butanol, acetone–water and isopropanol–water. Ind. Engng Chem. 35, 255260.Google Scholar
Butt, J. B., Graf, K. & Kappl, M. 2006 Physics and Chemistry of Interfaces. Wiley.Google Scholar
Carles, P. & Cazabat, A. M. 1989 Spreading involving the Marangoni effect: some preliminary results. Colloids Surf. 41, 97105.Google Scholar
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids. Clarendon Press.Google Scholar
Cheng, J.-T. & Giordano, N. 2002 Fluid flow through nanometer-scale channels. Phys. Rev. E 65, 031206.Google Scholar
Cira, N. J., Benusiglio, A. & Prakash, M. 2015 Vapour-mediated sensing and motility in two-component droplets. Nature 519, 446450.Google Scholar
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.Google Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827829.Google Scholar
Dukhin, S. S., Kretzschmar, G. & Miller, R. 1995 Dynamics of Adsorption at Liquid Interfaces: Theory, Experiment, Application. Elsevier.Google Scholar
Eastoe, J. & Dalton, J. S. 2000 Dynamic surface tension and adsorption mechanisms of surfactants at the air–water interface. Adv. Colloid Interface Sci. 85, 103144.Google Scholar
Gaver, D. P. & Grotberg, J. B. 1990 The dynamics of a localized surfactant on a thin film. J. Fluid Mech. 213, 127148.Google Scholar
Gaver, D. P. & Grotberg, J. B. 1992 Droplet spreading on a thin viscous film. J. Fluid Mech. 235, 399414.Google Scholar
Hernández-Sánchez, J. H., Eddi, A. & Snoeijer, J. H. 2015 Marangoni spreading due to a localized alcohol supply on a thin water film. Phys. Fluids 27, 032003.Google Scholar
Isenberg, C. 1992 The Science of Soap Films and Soap Bubbles. Dover.Google Scholar
Jensen, O. E. & Grotberg, J. B. 1992 Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture. J. Fluid Mech. 240, 259288.Google Scholar
Jin, H., Marmur, A., Ikkala, O. & Ras, R. H. A. 2012 Vapour-driven Marangoni propulsion: continuous, prolonged and tunable motion. Chem. Sci. 3, 25262529.Google Scholar
Joseph, P. & Tabeling, P. 2005 Direct measurement of the apparent slip length. Phys. Rev. E 71, 035303.Google Scholar
Keiser, L., Bense, H., Colinet, P., Bico, J. & Reyssat, E. 2017 Marangoni bursting: evaporation-induced emulsification of binary mixtures on a liquid layer. Phys. Rev. Lett. 118, 074504.Google Scholar
Keller, J. B. 1983 Breaking of liquid films and threads. Phys. Fluids 26, 34513453.Google Scholar
Kern, W. 1990 The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137, 18871892.Google Scholar
Kim, H.-Y., Lee, H. J. & Kang, B. H. 2002 Sliding of liquid drops down an inclined solid surface. J. Colloid Interface Sci. 247, 372380.Google Scholar
Kim, H.-Y. 2007 On thermocapillary propulsion of microliquid slug. Nanoscale Microscale Thermophys. Engng 11, 351362.Google Scholar
Kim, H., Muller, K., Shardt, O., Afkhami, S. & Stone, H. A. 2017 Solutal Marangoni flows of miscible liquids drive transport without surface contamination. Nat. Phys. 13, 11051110.Google Scholar
Kim, S., Moon, M.-W. & Kim, H.-Y. 2013 Drop impact on super-wettability-contrast annular patterns. J. Fluid Mech. 730, 328342.Google Scholar
Leenaars, A. F. M., Huethorst, J. A. M. & van Oekel, J. J. 1990 Marangoni drying: a new extremely clean drying process. Langmuir 6, 17011703.Google Scholar
Lugg, G. A. 1968 Diffusion coefficients of some organic and other vapors in air. Anal. Chem. 40, 10721077.Google Scholar
Marra, J. & Huethorst, J. A. M. 1991 Physical principles of Marangoni drying. Langmuir 7, 27482755.Google Scholar
Matar, O. K. & Craster, R. V. 2001 Models for Marangoni drying. Phys. Fluids 13, 18691883.Google Scholar
Miller, R., Joos, P. & Fainerman, V. B. 1994 Dynamic surface and interfacial tensions of surfactant and polymer solutions. Adv. Colloid Interface Sci. 49, 249302.Google Scholar
Mishima, H., Yasui, T., Mizuniwa, T., Abe, M. & Ohmi, T. 1989 Particle-free wafer cleaning and drying technology. IEEE Trans. Semicond. 2, 6975.Google Scholar
Redon, C., Brochard-Wyart, F. & Rondelez, F. 1991 Dynamics of dewetting. Phys. Rev. Lett. 66, 715718.Google Scholar
Reinhardt, K. & Kern, W. 2018 Handbook of Silicon Wafer Cleaning Technology. William Andrew.Google Scholar
Rio, E., Daerr, A., Lequeux, F. & Limat, L. 2006 Moving contact lines of a colloidal suspension in the presence of drying. Langmuir 22, 31863191.Google Scholar
Shaw, D. J. 1992 Introduction to Colloid and Surface Chemistry, 4th edn. Butterworth-Heinemann.Google Scholar
Sutherland, K. L. 1952 The kinetics of adsorption at liquid surfaces. Aust. J. Sci. Res. A 5, 683696.Google Scholar
Troian, S. M., Herbolzheimer, E. & Safran, S. A. 1990 Model for the fingering instability of spreading surfactant drops. Phys. Rev. Lett. 65, 333336.Google Scholar
van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys. Rev. E 85, 026315.Google Scholar
Vázquez, G., Alvarez, E. & Navaza, J. M. 1995 Surface tension of alcohol + water from 20 to 50 ° C. J. Chem. Engng Data 40, 611614.Google Scholar
Warner, M. R. E., Craster, R. V. & Matar, O. K. 2004 Fingering phenomena associated with insoluble surfactant spreading on thin liquid films. J. Fluid Mech. 510, 169200.Google Scholar