Hostname: page-component-55f67697df-7l9ct Total loading time: 0 Render date: 2025-05-11T09:19:54.566Z Has data issue: false hasContentIssue false

Detonation initiation induced by dual hot spots: a computational study

Published online by Cambridge University Press:  09 May 2025

Jie Sun
Affiliation:
HEDPS, SKLTCS, College of Engineering, Peking University, Beijing 100871, PR China
Dehai Yu
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
Pengfei Yang
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
Yiqing Wang
Affiliation:
HEDPS, SKLTCS, College of Engineering, Peking University, Beijing 100871, PR China
Shengkai Wang
Affiliation:
HEDPS, SKLTCS, College of Engineering, Peking University, Beijing 100871, PR China
Zheng Chen*
Affiliation:
HEDPS, SKLTCS, College of Engineering, Peking University, Beijing 100871, PR China
*
Corresponding author: Zheng Chen, [email protected]

Abstract

Two-dimensional simulations incorporating detailed chemistry are conducted for detonation initiation induced by dual hot spots in a hydrogen/oxygen/argon mixture. The objective is to examine the transient behaviour of detonation initiation as facilitated by dual hot spots, and to elucidate the underlying mechanisms. Effects of hot spot pressure and distance on the detonation initiation process are assessed; and five typical initiation modes are identified. It is found that increasing the hot spot pressure promotes detonation initiation, but the impact of the distance between dual hot spots on detonation initiation is non-monotonic. During the initiation process, the initial hot spot autoignites, and forms the cylindrical shock waves. Then, the triple-shock structure, which is caused by wave collisions and consists of the longitudinal detonation wave, transverse detonation wave and cylindrical shock wave, dominates the detonation initiation behaviour. A simplified theoretical model is proposed to predict the triple-point path, whose curvature quantitatively indicates the diffraction intensity of transient detonation waves. The longitudinal detonation wave significantly diffracts when the curvature of the triple-point path is large, resulting in the failed detonation initiation. Conversely, when the curvature is small, slight diffraction effects fail to prevent the transient detonation wave from developing. The propagation of the transverse detonation wave is affected not only by the diffraction effects but also by the mixture reactivity. When the curvature of the triple-point trajectory is large, a strong cylindrical shock wave is required to compress the mixture, enhancing its reactivity to ensure the transverse detonation wave can propagate without decoupling.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

Currently at National University of Singapore.

References

Ballossier, Y., Virot, F. & Melguizo-Gavilanes, J. 2023 Flame acceleration and detonation onset in narrow channels: simultaneous schlieren visualization. Combust. Flame 254, 112833 CrossRefGoogle Scholar
Bartenev, A.M., Khomik, S.V., Gelfand, B.E., Grönig, H. & Olivier, H. 2000 Effect of reflection type on detonation initiation at shock-wave focusing. Shock Waves 10 (3), 205215.CrossRefGoogle Scholar
Clavin, P. & Denet, B. 2020 Analytical study of the direct initiation of gaseous detonations for small heat release. J. Fluid Mech. 897, A30.CrossRefGoogle Scholar
Clavin, P., Hernández Sánchez, R. & Denet, B. 2021 Asymptotic analysis of the critical dynamics of spherical gaseous detonations. J. Fluid Mech. 915, A122.CrossRefGoogle Scholar
Guo, H., Zhao, N., Zheng, H., Li, Z. & Sun, C. 2019 Numerical investigation of the direct initiation mechanism of double point laser ignitio. In 27th International Colloquium on the Dynamics of Explosions and Reactive Systems. Beijing, China.Google Scholar
Guo, H., Zhao, N., Zheng, H., Sun, C. & Yang, J. 2021 Numerical simulation of the direct initiation by double-point laser ignition. J. Combust. Sci. Technol. 27 (1), 4351 (in Chinese).Google Scholar
Hairer, E. & Wanner, G. 1996 Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer.CrossRefGoogle Scholar
He, L. & Clavin, P. 1994 On the direct initiation of gaseous detonations by an energy source. J. Fluid Mech. 277, 227248.CrossRefGoogle Scholar
Hu, J., Cheng, J., Zhang, B. & Ng, H.D. 2024 The diffraction and re-initiation characteristics of gaseous detonations with an irregular cellular structure. Aerosp. Sci. Technol. 150, 109240.CrossRefGoogle Scholar
Hu, J. & Zhang, B. 2024 Time/frequency domain analysis of detonation wave propagation mechanism in a linear rotating detonation combustor. Appl. Therm. Eng. 255, 124014.CrossRefGoogle Scholar
Jackson, S.I., Austin, J.M. & Shepherd, J.E. 2006 Planar detonation wave initiation in large-aspect-ratio channels. AIAA J. 44 (10), 24222425.CrossRefGoogle Scholar
Jiang, Z. 2023 Standing oblique detonation for hypersonic propulsion: a review. Prog. Aerosp. Sci. 143, 100955.CrossRefGoogle Scholar
Jiang, Z. & Teng, H. 2022 Classical Theory of Detonation Initiation and Dynamic Parameters. Springer.CrossRefGoogle Scholar
Law, C.K. 2006 Combustion Physics. Cambridge University Press.CrossRefGoogle Scholar
Lee, J.H.S. 1984 Dynamic parameters of gaseous detonations. Annu. Rev. Fluid Mech. 16 (1), 311336.CrossRefGoogle Scholar
Lee, J.H.S. 2008 The Detonation Phenomenon. Cambridge University Press.CrossRefGoogle Scholar
Lee, J.H.S. & Higgins, A.J. 1999 Comments on criteria for direct initiation of detonation. Philos. Trans. R. Soc. A 357 (1764), 35033521.CrossRefGoogle Scholar
Leer, B.v 1974 Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14 (4), 361370.CrossRefGoogle Scholar
Li, Y. & Zhang, B. 2023 Visualization of ignition modes in methane-based mixture induced by shock wave focusing. Combust. Flame 247, 112491.CrossRefGoogle Scholar
Liu, W. 2012 Mechanism of indirect initiation of detonation. Combust. Flame 159 (5), 19972007.CrossRefGoogle Scholar
Liu, Y., Wang, H., Luo, K. & Fan, J. 2024 Numerical simulations of wedge-induced oblique detonation waves in ammonia/hydrogen/air mixtures. Int. J. Hydrogen Energ. 86, 199207.CrossRefGoogle Scholar
Ng, H.D. & Lee, J.H.S. 2003 Direct initiation of detonation with a multi-step reaction scheme. J. Fluid Mech. 476, 179211.CrossRefGoogle Scholar
Ó Conaire, M., Curran, H.J., Simmie, J.M., Pitz, W.J. & Westbrook, C.K. 2004 A comprehensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet. 36 (11), 603622.CrossRefGoogle Scholar
Pintgen, F. & Shepherd, J.E. 2009 Detonation diffraction in gases. Combust. Flame 156 (3), 665677.CrossRefGoogle Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. R.T. Edwards, Inc.Google Scholar
Poling, B.E., Prausnitz, J.M. & O’connell, J.P. 2001 The Properties of Gases and Liquids. Mcgraw-Hill.Google Scholar
Rankin, B.A., Fotia, M.L., Naples, A.G., Stevens, C.A., Hoke, J.L., Kaemming, T.A., Theuerkauf, S.W. & Schauer, F.R. 2017 Overview of performance, application, and analysis of rotating detonation engine technologies. J. Propul. Power 33 (1), 131143.CrossRefGoogle Scholar
Rettenmaier, D., Deising, D., Ouedraogo, Y., Gjonaj, E., De Gersem, H., Bothe, D., Tropea, C. & Marschall, H. 2019 Load balanced 2D and 3D adaptive mesh refinement in OpenFOAM. SoftwareX 10, 100317.CrossRefGoogle Scholar
Roy, G.D., Frolov, S.M., Borisov, A.A. & Netzer, D.W. 2004 Pulse detonation propulsion: challenges, current status, and future perspective. Prog. Energ. Combust. 30 (6), 545672.CrossRefGoogle Scholar
Shepherd, J.E. 2009 Detonation in gases. P. Combust. Inst. 32 (1), 8398.CrossRefGoogle Scholar
Smirnov, N.N., Penyazkov, O.G., Sevrouk, K.L., Nikitin, V.F., Stamov, L.I. & Tyurenkova, V.V. 2017 Detonation onset following shock wave focusing. Acta Astronaut. 135, 114130.CrossRefGoogle Scholar
Starikovskiy, A., Aleksandrov, N. & Rakitin, A. 2012 Plasma-assisted ignition and deflagration-to-detonation transition. Philos. Trans. R. Soc. A 370 (1960), 740773,CrossRefGoogle ScholarPubMed
Sun, J., Tian, B. & Chen, Z. 2023 Effect of ozone addition and ozonolysis reaction on the detonation properties of C2H4/O2/Ar mixtures. P. Combust. Inst. 39 (3), 27972806.CrossRefGoogle Scholar
Sun, J., Wang, Y., Tian, B. & Chen, Z. 2023 detonationFoam: an open-source solver for simulation of gaseous detonation based on OpenFOAM. Comput. Phys. Commun. 292, 108859.CrossRefGoogle Scholar
Sun, J., Yang, P., Tian, B. & Chen, Z. 2023 Evolution and control of oblique detonation wave structure in unsteady inflow. AIAA J. 61 (11), 48084820.CrossRefGoogle Scholar
Sun, J., Yang, P., Wang, Y. & Chen, Z. 2024 Numerical study on detonation initiation by multiple hot spots. P. Combust. Inst. 40 (1–4), 105191.CrossRefGoogle Scholar
Tekgül, B., Peltonen, P., Kahila, H., Kaario, O. & Vuorinen, V. 2021 DLBFoam: An open-source dynamic load balancing model for fast reacting flow simulations in OpenFOAM. Comput. Phys. Commun. 267, 108073.CrossRefGoogle Scholar
Utkin, P.S., Lopato, A.I. & Vasil’ev, A.A. 2020 Mechanisms of detonation initiation in multi-focusing systems. Shock Waves 30 (7–8), 741753.CrossRefGoogle Scholar
Vasil’ev, A.A. 2015 Cellular structures of a multifront detonation wave and initiation (Review). Combust. Explos. Shock Waves 51 (1), 120.CrossRefGoogle Scholar
Vasilev, A.A., Nikolaev, Y.A. & Ul’yanitskii, V.Y. 1979 Critical energy of initiation of a multifront detonation. Combust. Explos. Shock Waves 15 (6), 768775.CrossRefGoogle Scholar
Vorenkamp, M., Steinmetz, S.A., Chen, T.Y., Mao, X., Starikovskiy, A., Kliewer, C. & Ju, Y. 2023 Plasma-assisted deflagration to detonation transition in a microchannel with fast-frame imaging and hybrid fs/ps coherent anti-Stokes Raman scattering measurements. P. Combust. Inst. 39 (4), 55615569.CrossRefGoogle Scholar
Wang, Y., Chen, Z. & Chen, H. 2021 Diffraction of weakly unstable detonation through an obstacle with different sizes and shapes. Phys. Rev. Fluids 6 (4), 043201.CrossRefGoogle Scholar
Wang, Z., Wei, L., Li, H., Pan, Z., Huang, J., Zhang, Y. & Liu, Z. 2020 Ignition energy effect on detonation initiation by single and two successive ignitions. Thermal Sci. 24 (6 Part B), 42094220.CrossRefGoogle Scholar
Wolański, P. 2013 Detonative propulsion. P. Combust. Inst. 34 (1), 125158.CrossRefGoogle Scholar
Xiao, H. & Oran, E.S. 2020 Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes. Combust. Flame 220, 378393.CrossRefGoogle Scholar
Xie, W., Zhang, R., Lai, J. & Li, H. 2018 An accurate and robust HLLC-type Riemann solver for the compressible Euler system at various Mach numbers. Int. J. Numer. Meth. Fl. 89 (10), 430463.CrossRefGoogle Scholar
Yang, Z., Zhang, B. & Ng, H.D. 2024 Experimental observations of gaseous cellular detonation reflection. P. Combust. Inst. 40 (1–4), 105519.CrossRefGoogle Scholar
Yuan, X.Q., Mi, X.C., Ng, H.D. & Zhou, J. 2019 A model for the trajectory of the transverse detonation resulting from re-initiation of a diffracted detonation. Shock Waves 30 (1), 1327.CrossRefGoogle Scholar
Zhang, B. & Bai, C. 2014 Methods to predict the critical energy of direct detonation initiation in gaseous hydrocarbon fuels – an overview. Fuel 117, 294308.CrossRefGoogle Scholar
Zhang, F. 2012 Shock Waves Science and Technology Library, Vol. 6. Detonation Dynamics. Springer.CrossRefGoogle Scholar
Zhou, R., Wu, D. & Wang, J. 2016 Progress of continuously rotating detonation engines. Chin. J. Aeronaut. 29 (1), 1529.CrossRefGoogle Scholar