Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T07:33:39.705Z Has data issue: false hasContentIssue false

Dependence of the non-stationary form of Yaglom’s equation on the Schmidt number

Published online by Cambridge University Press:  30 January 2002

P. ORLANDI
Affiliation:
Departimento di Meccanica e Aeronautica, Universita Degli Studi di Roma ‘La Sapienza’, 00184 Rome, Italy
R. A. ANTONIA
Affiliation:
Department of Mechanical Engineering, University of Newcastle, N.S.W. 2308, Australia

Abstract

The dynamic equation for the second-order moment of a passive scalar increment is investigated in the context of DNS data for decaying isotropic turbulence at several values of the Schmidt number Sc, between 0.07 and 7. When the terms of the equation are normalized using Kolmogorov and Batchelor scales, approximate independence from Sc is achieved at sufficiently small rB (r is the separation across which the increment is estimated and ηB is the Batchelor length scale). The results imply approximate independence of the mixed velocity-scalar derivative skewness from Sc and underline the importance of the non-stationarity. At small rB, the contribution from the non-stationarity increases as Sc increases.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)