Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T14:56:09.041Z Has data issue: false hasContentIssue false

Deformation of a biconcave-discoid capsule in extensional flow and electric field

Published online by Cambridge University Press:  03 December 2018

Sudip Das
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
Shivraj D. Deshmukh
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
Rochish M. Thaokar*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
*
Email address for correspondence: [email protected]

Abstract

Natural (red blood cells) and artificial biconcave-discoid-shaped capsules have immense biological (a cellular component of blood) and technological (as drug carrier) relevance, respectively. Their low reduced volume allows significant shape changes under external fields such as extensional flows (encountered at junctions and size-varying capillaries in biological flows) and electric fields (in applications such as electroporation and dielectrophoresis). This work demonstrates biconcave-discoid to capped-cylindrical and prolate-spheroid shape transitions of a capsule in uniaxial extensional flow as well as in DC and AC electric fields. The shape changes of a stress-free biconcave-discoid capsule in external fields are important in determining the momentum and mass transfer between the capsule and the medium fluid as well as dielectrophoresis and electroporation phenomena of a capsule in an electric field. The biconcave-discoid to capped-cylindrical/prolate-spheroid shape transition is demonstrated for both a capsule (with parameters relevant to drug delivery) as well as for a red blood cell (physiological conditions). However, significant differences are observed in this shape transition depending upon the applied external fields. In an extensional flow, the pressure-driven transition shows the equator being squeezed in and the poles being pulled out to deform into a capped cylinder at low capillary number and a prolate spheroid at high capillary number. On the other hand, in the transition driven by electric fields, the shoulders of the capsule seem to play a significant role in the dynamics. The shape transition in the electric fields depends upon the relative magnitude of the electric and the hydrodynamic response times, particularly relevant for the dynamics of red blood cells in physiological conditions. A new method of analysing the shape transition of red blood cells in AC electric fields is suggested, where a large separation of time scales is observed between the hydrodynamic and electric responses.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashe, J. W., Bogen, D. K. & Takashima, S. 1988 Deformation of biological cells by electric fields: theoretical prediction of the deformed shape. Ferroelectrics 86, 311324.Google Scholar
Barthès-Biesel, D., Diaz, A. & Dhenin, E. 2002 Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J. Fluid Mech. 460, 211222.Google Scholar
Beving, H., Eriksson, L. E. G., Davey, C. L. & Kell, D. B. 1994 Dielectric properties of human blood and erythrocytes at radio frequencies (0.2–10 MHz); dependence on cell volume fraction and medium composition. Eur. Biophys. J. 23 (3), 207215.Google Scholar
Champion, J. A., Katare, Y. K. & Mitragotri, S. 2007 Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 121 (1–2), 39.Google Scholar
Chang, S., Takashima, S. & Asakura, T. 1985 Volume and shape changes of human erythrocytes induced by electrical fields. J. Bioelectr. 4 (2), 301316.Google Scholar
Cordasco, D. & Bagchi, P. 2017 On the shape memory of red blood cells. Phys. Fluids 29 (4), 041901.Google Scholar
Cruz, J. M. & García-Diego, F. J. 1998 Dielectrophoretic motion of oblate spheroidal particles. measurements of motion of red blood cells using the Stokes method. J. Phys. D 31 (14), 17451751.Google Scholar
Das, S. & Thaokar, R. M. 2018a Large deformation electrohydrodynamics of a Skalak elastic capsule in ac electric field. Soft Matt. 14, 17191736.Google Scholar
Das, S. & Thaokar, R. M. 2018b Large-deformation electrohydrodynamics of an elastic capsule in a DC electric field. J. Fluid Mech. 841, 489520.Google Scholar
De Loubens, C., Deschamps, J., Boedec, G. & Leonetti, M. 2015 Stretching of capsules in an elongation flow, a route to constitutive law. J. Fluid Mech. 767, R3.Google Scholar
Decuzzi, P., Pasqualini, R., Arap, W. & Ferrari, M. 2008 Intravascular delivery of particulate systems: Does geometry really matter? Pharmaceut. Res. 26 (1), 235243.Google Scholar
Diaz, A., Pelekasis, N. & Barthès-Biesel, D. 2000 Transient response of a capsule subjected to varying flow conditions: Effect of internal fluid viscosity and membrane elasticity. Phys. Fluids 12 (5), 948957.Google Scholar
Du, E., Dao, M. & Suresh, S. 2014 Quantitative biomechanics of healthy and diseased human red blood cells using dielectrophoresis in a microfluidic system. Extreme Mech. Lett. 1, 3541.Google Scholar
Engelhardt, H. & Sackmann, E. 1988 On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields. Biophys. J. 54 (3), 495508.Google Scholar
Evans, E. & Fung, Y.-C. 1972 Improved measurements of the erythrocyte geometry. Microvasc. Res. 4 (4), 335347.Google Scholar
Evans, E. A. 1980 Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Biophys. J. 30, 265284.Google Scholar
Evans, E. A., Waugh, R. & Melnik, L. 1976 Elastic area compressibility modulus of red cell membrane. Biophys. J. 16 (2), 585595.Google Scholar
Fischer, T. M. 2004 Shape memory of human red blood cells. Biophys. J. 86 (5), 33043313.Google Scholar
Freund, J. B. 2014 Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46 (1), 6795.Google Scholar
Friend, A., Finch, E. & Schwan, H. 1975 Low frequency electric field induced changes in the shape and motility of amoebas. Science 187, 357359.Google Scholar
Gass, G. V., Chernomordik, L. V. & Margolis, L. B. 1991 Local deformation of human red blood cells in high frequency electric field. Biochim. Biophys. Acta 1093 (2), 162167.Google Scholar
Grosse, C. & Schwan, H. P. 1992 Cellular membrane potentials induced by alternating fields. Biophys. J. 63 (6), 16321642.Google Scholar
Guckenberger, A. & Gekle, S. 2017 Theory and algorithms to compute Helfrich bending forces: A review. J. Phys.: Condens. Matter 29 (20), 203001.Google Scholar
Haidekker, M. A., Tsai, A. G., Brady, T., Stevens, H. Y., Frangos, J. A., Theodorakis, E. & Intaglietta, M. 2002 A novel approach to blood plasma viscosity measurement using fluorescent molecular rotors. Am. J. Physiol. 282 (5), H1609H1614.Google Scholar
Helfrich, W. & Deuling, H. J. 1975 Macroscopic features. d) Biological systems: some theoretical shapes of red blood cells. J. de Phys. Colloques 36 (C1), 327329.Google Scholar
Henon, Y., Sheard, G. J. & Fouras, A. 2014 Erythrocyte deformation in a microfluidic cross-slot channel. RSC Adv. 4, 3607936088.Google Scholar
Hu, W. F., Kim, Y. & Lai, M.-C. 2014 An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier–Stokes flows. J. Comput. Phys. 257 (Part A), 670686.Google Scholar
Joshi, R. P. & Hu, Q. 2012 Role of electropores on membrane blebbinga model energy-based analysis. J. Appl. Phys. 112 (6), 064703.Google Scholar
Joshi, R. P., Hu, Q., Schoenbach, K. H. & Beebe, S. J. 2002 Simulations of electroporation dynamics and shape deformations in biological cells subjected to high voltage pulses. IEEE Trans. Plasma Sci. 30 (4), 15361546.Google Scholar
Karyappa, R. B., Deshmukh, S. D. & Thaokar, R. M. 2014 Deformation of an elastic capsule in a uniform electric field. Phys. Fluids 26 (12), 122108.Google Scholar
Kononenko, V. L. & Shimkus, J. K. 2000 Stationary deformations of erythrocytes by high-frequency electric field. Bioelectrochemistry 52 (2), 187196.Google Scholar
Kononenko, V. L. & Shimkus, J. K. 2002 Transient dielectro-deformations of erythrocyte governed by time variation of cell ionic state. Bioelectrochemistry 55 (1), 97100.Google Scholar
Kononenko, V. L. 2002 Dielectro-deformations and flicker of erythrocytes: fundamental aspects of medical diagnostics applications. Proc. SPIE 4707, 134143.Google Scholar
Kozlovskaya, V., Alexander, J. F., Wang, Y., Kuncewicz, T., Liu, X., Godin, B. & Kharlampieva, E. 2014 Internalization of red blood cell-mimicking hydrogel capsules with ph-triggered shape responses. ACS Nano 8 (6), 57255737.Google Scholar
Krueger, M. & Thom, F. 1997 Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures. Biophys. J. 73 (5), 26532666.Google Scholar
Kwak, S. & Pozrikidis, C. 2001 Effect of membrane bending stiffness on the axisymmetric deformation of capsules in uniaxial extensional flow. Phys. Fluids 13 (5), 12341242.Google Scholar
Lac, E., Morel, A. & Barthès-Biesel, D. 2007 Hydrodynamic interaction between two identical capsules in simple shear flow. J. Fluid Mech. 573, 149169.Google Scholar
Lee, S. S., Yim, Y., Ahn, K. H. & Lee, S. J. 2009a Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomedical Microdevices 11 (5), 10211027.Google Scholar
Lee, S.-Y., Ferrari, M. & Decuzzi, P. 2009b Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20 (49), 495101.Google Scholar
Levant, M. & Steinberg, V. 2016 Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow. Phys. Rev. E 94, 062412.Google Scholar
McConnell, L. C., Vlahovska, P. M. & Miksis, M. J. 2015 Vesicle dynamics in uniform electric fields: squaring and breathing. Soft Matt. 11, 48404846.Google Scholar
Merkel, T. J., Jones, S. W., Herlihy, K. P., Kersey, F. R., Shields, A. R., Napier, M., Luft, J. C., Wu, H., Zamboni, W. C., Wang, A. Z., Bear, J. E. & DeSimone, J. M. 2011 Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl Acad. Sci. USA 108 (2), 586591.Google Scholar
Mohandas, N. & Evans, E. 1994 Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23 (1), 787818.Google Scholar
Pozrikidis, C. 1990 The axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow. J. Fluid Mech. 216, 231254.Google Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.Google Scholar
Pozrikidis, C. 2003a Modeling and Simulation of Capsules and Biological Cells. Chapman & HALL/CRC.Google Scholar
Pozrikidis, C. 2003b Numerical simulation of the flow-induced deformation of red blood cells. Ann. Biomed. Engng 31 (10), 11941205.Google Scholar
Pozrikidis, C. 2005 Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17 (3), 031503.Google Scholar
Rallison, J. M. & Acrivos, A. 1978 A numerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech. 89, 191200.Google Scholar
Scheurich, P., Zimmermann, U., Mischel, M. & Lamprecht, I. 1980 Membrane fusion and deformation of red blood cells by electric fields. Z. Naturforsch. C 35 (11–12), 10811085.Google Scholar
Sebastián, J. L., Mun̄oz, S., Sancho, M. & Miranda, J. M. 2006 Analysis of the electric field induced forces in erythrocyte membrane pores using a realistic cell model. Phys. Med. Biol. 51 (23), 62136224.Google Scholar
Secomb, T. W. 2017 Blood flow in the microcirculation. Annu. Rev. Fluid Mech. 49 (1), 443461.Google Scholar
She, S., Li, Q., Shan, B., Tong, W. & Gao, C. 2013 Fabrication of red-blood-cell-like polyelectrolyte microcapsules and their deformation and recovery behavior through a microcapillary. Adv. Mater. 25 (40), 58145818.Google Scholar
She, S., Yu, D., Han, X., Tong, W., Mao, Z. & Gao, C. 2014 Fabrication of biconcave discoidal silica capsules and their uptake behavior by smooth muscle cells. J. Colloid Interface Sci. 426, 124130.Google Scholar
Skalak, R., Tozeren, A., Zarda, R. P. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13 (3), 245264.Google Scholar
Sukhorukov, V. L., Mussauer, H. & Zimmermann, U. 1998 The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity media. J. Membr. Biol. 163 (3), 235245.Google Scholar
Thom, F. 2009 Mechanical properties of the human red blood cell membrane at - 15 °C. Cryobiology 59 (1), 2427.Google Scholar
Thom, F. & Gollek, H. 2006 Calculation of mechanical properties of human red cells based on electrically induced deformation experiments. J. Electrostat. 64 (1), 5361.Google Scholar
Trefethen, L. N.1996 Finite difference and spectral methods for ordinary and partial differential equations. Chapter 7 in unpublished text https://people.maths.ox.ac.uk/trefethen/pdetext.html.Google Scholar
Ur, A. & Lushbaugh, C. C. 1968 Some effects of electrical fields on red blood cells with remarks on electronic red cell sizing. Brit. J. Haematology 15 (6), 527538.Google Scholar
Venkataraman, S., Hedrick, J. L., Ong, Z. Y., Yang, C., Ee, P. L. R., Hammond, P. T. & Yang, Y. Y. 2011 The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 63 (14–15), 12281246.Google Scholar
Vlahovska, P. M., Podgorski, T. & Misbah, C. 2009 Vesicles and red blood cells in flow: From individual dynamics to rheology. C. R. Phys. 10 (8), 775789.Google Scholar
Wolf, M., Gulich, R., Lunkenheimer, P. & Loidl, A. 2011 Broadband dielectric spectroscopy on human blood. Biochimica et Biophysica Acta (BBA) - General Subjects 1810 (8), 727740.Google Scholar
Yaginuma, T., Oliveira, M. S. N., Lima, R., Ishikawa, T. & Yamaguchi, T. 2013 Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel. Biomicrofluidics 7 (5), 054110.Google Scholar
Yazdani, A. Z. K., Kalluri, R. M. & Bagchi, P. 2011 Tank-treading and tumbling frequencies of capsules and red blood cells. Phys. Rev. E 83 (4 Pt 2), 046305.Google Scholar
Yen, J.-H., Chen, S.-F., Chern, M.-K. & Lu, P.-C. 2015 The effects of extensional stress on red blood cell hemolysis. Biomed. Engng: Applics. Basis Commun. 27 (05), 1550042.Google Scholar
Zhou, H. & Pozrikidis, C. 1995 Deformation of liquid capsules with incompressible interfaces in simple shear flow. J. Fluid Mech. 283, 175200.Google Scholar