Hostname: page-component-55f67697df-zpzq9 Total loading time: 0 Render date: 2025-05-09T20:55:45.190Z Has data issue: false hasContentIssue false

Deformation dynamics of ferrofluid drops with field-dependent local magnetisation

Published online by Cambridge University Press:  09 May 2025

Debdeep Bhattacharjee
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
Arnab Atta
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
Suman Chakraborty*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
*
Corresponding author: Suman Chakraborty, [email protected]

Abstract

Achieving precise control over the dynamic manipulation of a drop using an external magnetic field may face challenges due to the intricate relationship between the induced magnetisation and the inherent magnetic properties of the drop. Here, we put forward a fundamental theory that elucidates the morphology and behaviour of a ferrofluid droplet immersed in a different, viscous fluid when subjected to a uniform external magnetic field. Unlike previous studies, we introduce an asymptotic model that investigates the dynamic evolution of the drop by examining the local magnetisation as a function of the magnetic field itself. This leads to an additional contribution to the interfacial energy, resulting in an excess normal traction at the interface. Our analytical findings highlight the significant impact of saturation magnetisation and initial susceptibility of the ferrofluid on the resulting dynamic characteristics, which are further explored through comprehensive numerical simulations to address deformations beyond the scope of the asymptotic theory. Supported by benchmark numerical and experimental results, our study suggests that higher magnetic fields and/or greater saturation magnetisation can enhance drop elongation and accelerate its settling process. We develop a regime map illustrating various dynamic events based on the magnetic properties, which could have fundamental implications for the design and control of micro-encapsulations across a wide range of applications, including thermal processing, chemical synthesis, analysis and medical diagnostics.

JFM classification

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abicalil, V.G., Abdo, R.F., da Cunha, L.H.P. & de Oliveira, T.F. 2021 On the magnetization of dilute ferrofluid emulsions in shear flows. Phys. Fluids 33 (5), 053313.CrossRefGoogle Scholar
Afkhami, S. & Renardy, Y. 2017 Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling. J. Engng Maths 107 (1), 231251.CrossRefGoogle Scholar
Afkhami, S., Renardy, Y., Renardy, M., Riffle, J.S. & St Perre, T. 2008 Field-induced motion of ferrofluid drops through immiscible viscous media. J. Fluid Mech. 610, 363380.CrossRefGoogle Scholar
Afkhami, S., Tyler, A.J., Renardy, Y., Renardy, M., St. Pierre, T.G., Woodward, R.C. & Riffle, J.S. 2010 Deformation of a hydrophobic ferrofluid drop suspended in a viscous medium under uniform magnetic fields. J. Fluid Mech. 663, 358384.CrossRefGoogle Scholar
Al-Areqi, A.R., Yu, X., Yang, R., Wang, C., Wu, C. & Zhang, W. 2023 Synthesis of zinc ferrite particles with high saturation magnetization for magnetic induction hyperthermia. J. Magn. Magn. Mater. 579, 170839.CrossRefGoogle Scholar
Arkhipenko, V.I., Barkov, Y.D. & Bashtovoi, V.G. 1978 Shape of a drop magnetized fluid in a homogeneous magnetic field. Magnetohydrodynamics 14 (3), 373375.Google Scholar
Bacri, J.C., Cebers, A.O. & Perzynski, R. 1994 Behavior of a magnetic fluid microdrop in a rotating magnetic field. Phys. Rev. Lett. 72 (17), 27052708.CrossRefGoogle Scholar
Bacri, J.C. & Salin, D. 1982 Instability of ferrofluid magnetic drops under magnetic field. J. Phys. Lett. 43 (17), 649654.CrossRefGoogle Scholar
Bacri, J.C. & Salin, D. 1983 a Dynamics of the shape transition of a magnetic ferrofluid drop. J. Phys. Lett. 44 (11), 415420.CrossRefGoogle Scholar
Bacri, J.C. & Salin, D. 1983 b Bistability of ferrofluid magnetic drops under magnetic field. J. Magn. Magn. Mater. 39 (1–2), 4850.CrossRefGoogle Scholar
Bacri, J.C., Salin, D. & Massart, R. 1982 Study of the deformation of ferrofluid drops in a magnetic field. J. Phys. Lett. 43 (6), 179184.CrossRefGoogle Scholar
Badalassi, V.E., Ceniceros, H.D. & Banerjee, S. 2003 Computation of multiphase systems with phase field models. J. Comput. Phys. 190 (2), 371397.CrossRefGoogle Scholar
Bai, F., He, X., Yang, X., Zhou, R. & Wang, C. 2017 Three-dimensional phase-field investigations of droplet formation in microfluidic flow-focusing devices with experimental validation. Intl J. Multiphase Flow 93, 130141.CrossRefGoogle Scholar
Bandopadhyay, A., Mandal, S., Kishore, N.K. & Chakraborty, S. 2016 Uniform electric-field-induced lateral migration of a sedimenting drop. J. Fluid Mech. 792, 553589.CrossRefGoogle Scholar
Bashtovoi, V.G., Lavrova, O.A., Polevikov, V.K. & Tobiska, L. 2002 Computer modeling of the instability of a horizontal magnetic-fluid layer in a uniform magnetic field. J. Magn. Magn. Mater. 252, 299301.CrossRefGoogle Scholar
Bashtovoi, V.G., Pogirnitskaya, S.G. & Reks, A. 1987 Determination of the shape of a free drop of magnetic fluid in a uniform magnetic field. Magnetohydrodynamics 23, 4954.Google Scholar
Bates, P.W. & Fife, P.C. 2006 The dynamics of nucleation for the Cahn–Hilliard equation. SIAM J. Appl. Maths 53 (4), 9901008.CrossRefGoogle Scholar
Behera, N. & Chakraborty, S. 2020 Effect of charge convection on gravitational settling of drop in uniform electric field. Phys. Fluids 32 (11), 112013.CrossRefGoogle Scholar
Berkovsky, B.M. & Bashtovoy, V. 1996 Magnetic Fluids and Applications Handbook. Begell House.CrossRefGoogle Scholar
Bhattacharjee, D., Atta, A. & Chakraborty, S. 2024 a Switchable wettability states of a ferrofluid drop atop a hydrophobic interface. J. Phys. Chem. B 128 (5), 13251331.CrossRefGoogle Scholar
Bhattacharjee, D., Atta, A. & Chakraborty, S. 2024 b Revisiting the Young’s model for ferrofluid droplets: magnetowetting or magneto-dewetting? Colloids Surf. A: Physicochem. Engng Aspects 691, 133878.CrossRefGoogle Scholar
Bhattacharjee, D., Chakraborty, S. & Atta, A. 2024 c Magnetowetting dynamics of compound droplets. ACS Engng Au 4 (6), 524532.CrossRefGoogle Scholar
Bhattacharjee, D., Atta, A. & Chakraborty, S. 2024 d Magnetic field-mediated ferrofluid droplet deformation in extensional flow. Phys. Fluids 36 (9), 092020.CrossRefGoogle Scholar
Bhattacharjee, D., Atta, A. & Chakraborty, S. 2024 e Evolution of ferrofluid drop deformation under magnetic field in a uniaxial flow. In FMFP 2022: Fluid Mechanics and Fluid Power, vol. 5, pp. 451461.Springer.Google Scholar
Brancher, J.P. & Guillaume, O.S. 1980 Study of the static stability of a ferrofluid seal in a nonlinear model. IEEE Trans. Magn. 16 (5), 13371341.CrossRefGoogle Scholar
Brancher, J.P. & Guillaume, O.S. 1985 Étude de la déformation d’un liquide magnétique. Arch. Rat. Mech. Anal. 90 (1), 5785.CrossRefGoogle Scholar
Brancher, J.P. & Zouaoui, D. 1987 Equilibrium of a magnetic liquid drop. J. Magn. Magn. Mater. 65 (2–3), 311314.CrossRefGoogle Scholar
Cahn, J.W. & Hilliard, J.E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (2), 258267.CrossRefGoogle Scholar
Cahn, J.W. & Hilliard, J.E. 1959 Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31 (3), 688699.CrossRefGoogle Scholar
Capobianchi, P., Lappa, M., Oliveira, M.S. & Pinho, F.T. 2021 Shear rheology of a dilute emulsion of ferrofluid droplets dispersed in a nonmagnetizable carrier fluid under the influence of a uniform magnetic field. J. Rheol. 65 (5), 925941.CrossRefGoogle Scholar
Cebers, A. & Kalis, H. 2012 Mathematical modelling of an elongated magnetic drop in a rotating magnetic field. Math. Model. Anal. 17 (1), 4757.CrossRefGoogle Scholar
Cowley, M.D. & Rosensweig, R.E. 1967 The interfacial stability of a ferromagnetic fluid. J. Fluid Mech. 30 (4), 671688.CrossRefGoogle Scholar
Cunha, L.H.P., Siqueira, I.R., Cunha, F.R. & Oliveira, T.F. 2020 Effects of external magnetic fields on the rheology and magnetization of dilute emulsions of ferrofluid droplets in shear flows. Phys. Fluids 32 (7), 073306.CrossRefGoogle Scholar
Engel, A., Lebedev, A.V. & Morozov, K.I. 2003 Rotating ferrofluid drops. Z. Naturforsch. 58 (12), 703721.CrossRefGoogle Scholar
Erdmanis, J., Kitenbergs, G., Perzynski, R. & Cēbers, A. 2017 Magnetic micro-droplet in rotating field: numerical simulation and comparison with experiment. J. Fluid Mech. 821, 266295.CrossRefGoogle Scholar
Filali, Y., Er-Riani, M. & El Jarroudi, M. 2018 The deformation of a ferrofluid drop under a uniform magnetic field. Intl J. Nonlinear Mech. 99, 173181.CrossRefGoogle Scholar
Guilherme, A.L., Siqueira, I.R., Cunha, L.H.P., Thompson, R.L. & Oliveira, T.F. 2023 Ferrofluid droplets in planar extensional flows: droplet shape and magnetization reveal novel rheological signatures of ferrofluid emulsions. Phys. Rev. Fluids 8 (6), 063601.CrossRefGoogle Scholar
Hadamard, J. 1911 Mouvement permanent lent d’une sphère liquide et visqueuse dans un liquide visqueux. C.R. Acad. Sci. 152 (25), 17351752.Google Scholar
Ishida, S. & Matsunaga, D. 2020 Rheology of a dilute ferrofluid droplet suspension in shear flow: viscosity and normal stress differences. Phys. Rev. Fluids 5 (12), 123603.CrossRefGoogle Scholar
Jacqmin, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155 (1), 96127.CrossRefGoogle Scholar
Jiang, X.F., Wu, Y.N., Ma, Y. & Li, H.Z. 2016 Formation and breakup dynamics of ferrofluid drops. Chem. Engng Res. Design 115, 262269.CrossRefGoogle Scholar
Jinxiang, Z., Yang, L., Wang, Y., Niu, X., Wu, J., Han, L. & Khan, A. 2024 Dynamic behavior of floating ferrofluid droplet through an orifice with a magnetic field. Comput. Fluids 279, 106341.CrossRefGoogle Scholar
Kawabata, Y., Ishida, S. & Imai, Y. 2024 Deformation and breakup of a ferrofluid droplet in shear flow under magnetic field. Phys. Fluids 36 (3), 033353.CrossRefGoogle Scholar
Khan, A., Zhang, S.T., Li, Q.P., Zhang, H., Wang, Y.Q. & Niu, X.D. 2021 Wetting dynamics of a sessile ferrofluid drop on solid substrates with different wettabilities. Phys. Fluids 33 (4), 042115.CrossRefGoogle Scholar
Khokhryakova (Bushueva), C., Kostarev, K. & Shmyrova, A. 2019 Deformation of ferrofluid floating drop under the action of magnetic field as method of interface tension measurement. Expl Therm. Fluid Sci. 101, 186192.CrossRefGoogle Scholar
Langevin, P. 1905 Magnetisme et theorie des electrons. Ann. Chim. Phys. 5, 70127.Google Scholar
Lavrova, O., Matthies, G., Mitkova, T., Polevikov, V. & Tobiska, L. 2006 Numerical treatment of free surface problems in ferrohydrodynamics. J. Phys.: Condens. Matt. 18 (38), S2657S2669.Google Scholar
Lavrova, O., Matthies, G., Polevikov, V. & Tobiska, L. 2004 Numerical modeling of the equilibrium shapes of a ferrofluid drop in an external magnetic field. Proc. Appl. Maths Mech. 4 (1), 704705.CrossRefGoogle Scholar
Lim, C.Y. & Lam, Y.C. 2014 Phase-field simulation of impingement and spreading of micro-sized drop on heterogeneous surface. Microfluid. Nanofluid. 17 (1), 131148.CrossRefGoogle Scholar
Magaletti, F., Picano, F., Chinappi, M., Marino, L. & Casciola, C.M. 2013 The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids. J. Fluid Mech. 714, 95126.CrossRefGoogle Scholar
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2017 The effect of surface charge convection and shape deformation on the settling velocity of drops in nonuniform electric field. Phys. Fluids 29 (1), 012101.CrossRefGoogle Scholar
Mandal, S., Ghosh, U., Bandopadhyay, A. & Chakraborty, S. 2015 Electro-osmosis of superimposed fluids in the presence of modulated charged surfaces in narrow confinements. J. Fluid Mech. 776, 390429.CrossRefGoogle Scholar
Nguyen, N.T., Ng, K.M. & Huang, X. 2006 Manipulation of ferrofluid drops using planar coils. Appl. Phys. Lett. 89 (5), 52509.CrossRefGoogle Scholar
Papathanasiou, A.G. & Boudouvis, A.G. 1998 Three-dimensional instabilities of ferromagnetic liquid bridges. Comput. Mech. 21 (4–5), 403408.CrossRefGoogle Scholar
Perry, M.P. 1978 A survey of ferromagnetic liquid applications. In Thermomechanics of Magnetic Fluids: Theory and Applications, Proceedings of the International Advanced Course and Workshop, Udine, Italy, October 3-7, 1977. (A79-36251 15-34) Washington, D.C., pp. 219230. Hemisphere Publishing Corp.Google Scholar
Qiu, M., Afkhami, S., Chen, C.Y. & Feng, J.J. 2018 Interaction of a pair of ferrofluid drops in a rotating magnetic field. J. Fluid Mech. 846, 121142.CrossRefGoogle Scholar
Rayleigh, L. 1882 On the equilibrium of liquid conducting masses charged with electricity. Lond. Edinburgh Dublin Phil. Mag. J. Sci. 14 (87), 184186.CrossRefGoogle Scholar
Rhodes, S., He, X., Elborai, S., Lee, S.H. & Zahn, M. 2006 Magnetic fluid behavior in uniform DC, AC, and rotating magnetic fields. J. Electrostat. 64 (7–9), 513519.CrossRefGoogle Scholar
Rowghanian, P., Meinhart, C.D. & Campàs, O. 2016 Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J. Fluid Mech. 802, 245262 CrossRefGoogle Scholar
Rybczynski, W. 1911 Uber die fortschreitende bewegung einer flussigen kugel in einem zahen medium. Bull. Acad. Sci. Cracovie A1, 4046.Google Scholar
Santra, S., Mandal, S. & Chakraborty, S. 2021 Phase-field modeling of multicomponent and multiphase flows in microfluidic systems: a review. Intl J. Numer. Meth. Heat Fluid Flow 31 (10), 30893131.CrossRefGoogle Scholar
Séro-Guillaume, O.E., Zouaoui, D., Bernardin, D. & Brancher, J.P. 1992 The shape of a magnetic liquid drop. J. Fluid Mech. 241 (18), 215232.CrossRefGoogle Scholar
Shi, D., Bi, Q. & Zhou, R. 2014 Numerical simulation of a falling ferrofluid drop in a uniform magnetic field by the VOSET method. Numer. Heat Transfer A: Applics 66 (2), 144164.CrossRefGoogle Scholar
Shliomis, M.I. 1972 Effective viscosity of magnetic suspensions. J. Expl Theor. Phys. 61 (6), 24112418.Google Scholar
Socoliuc, V., Avdeev, M.V., Kuncser, V., Turcu, R., Tombácz, E. & Vékás, L. 2022 Ferrofluids and bio-ferrofluids: looking back and stepping forward. Nanoscale 14 (13), 47864886.CrossRefGoogle ScholarPubMed
Sucksmith, W. & Pearce, R.R. 1938 The paramagnetism of the ferromagnetic elements. Proc. R. Soc. Lond. A: Math. Phys. Sci. 167 (929), 189204.Google Scholar
Taylor, G.I. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A: Math. Phys. Sci. 280 (1382), 383397.Google Scholar
Vinogradova, A.S., Naletova, V.A., Turkov, V.A. & Reks, A.G. 2013 Hysteresis of the shape of a finite magnetic fluid volume in axisymmetric magnetic fields. Magnetohydrodynamics 49 (1–2), 119126.CrossRefGoogle Scholar
Xu, X. & Homsy, G.M. 2006 The settling velocity and shape distortion of drops in a uniform electric field. J. Fluid Mech. 564, 395414.CrossRefGoogle Scholar
Yue, P., Feng, J.J., Liu, C. & Shen, J. 2004 A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293317.CrossRefGoogle Scholar
Zhang, S.T., Niu, X.D., Li, Q.P., Khan, A., Hu, Y. & Li, D.C. 2023 A numerical investigation on the deformation of ferrofluid droplets. Phys. Fluids 35 (1), 012102.CrossRefGoogle Scholar
Zhu, G.P., Nguyen, N.T., Ramanujan, R.V. & Huang, X.Y. 2011 Nonlinear deformation of a ferrofluid drop in a uniform magnetic field. Langmuir 27 (24), 1483414841.CrossRefGoogle Scholar