Published online by Cambridge University Press: 21 April 2006
When coils carrying high-frequency currents are placed in the neighbourhood of a stream of liquid metal (or other electrically conducting fluid), the magnetic pressure on the liquid surface causes a deflection of the stream. This effect is studied for a two-dimensional stream on the assumptions that the width of the stream is small compared with the scale characterizing the applied magnetic pressure distribution, and that the effect of gravity may be neglected over this scale. The relationship between the angle of deflection of the stream and the power supplied to the perturbing currents is determined. More complex deformations associated with distributed current sources are considered. Experiments are performed in which a thin sheet of mercury is deflected by two antiparallel line currents. The agreement between theory and experiment is reasonable, despite a tendency towards three-dimensionality in the latter. A second configuration is considered in which a thin current-carrying circular jet is deflected by a vertical line current. The path of the deflected jet is calculated. The limitations of the analysis are briefly discussed.