Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T18:38:26.211Z Has data issue: false hasContentIssue false

Cylinder rolling on a wall at low Reynolds numbers

Published online by Cambridge University Press:  22 September 2011

Alain Merlen
Affiliation:
Joint International Laboratory LEMAC, Institut d’Électronique Microélectronique et Nanotechnologie UMR CNRS 8520, Université des Sciences et Technologies de Lille, Ecole Centrale de Lille, France
Christophe Frankiewicz*
Affiliation:
Joint International Laboratory LEMAC, Institut d’Électronique Microélectronique et Nanotechnologie UMR CNRS 8520, Université des Sciences et Technologies de Lille, Ecole Centrale de Lille, France
*
Email address for correspondence: [email protected]

Abstract

The flow around a cylinder rolling or sliding on a wall was investigated analytically and numerically for small Reynolds numbers, where the flow is known to be two-dimensional and steady. Both prograde and retrograde rotation were analytically solved, in the Stokes regime, giving the values of forces and torque and a complete description of the flow. However, solving Navier–Stokes equation, a rotation of the cylinder near the wall necessarily induces a cavitation bubble in the nip if the fluid is a liquid, or compressible effects, if it is a gas. Therefore, an infinite lift force is generated, disconnecting the cylinder from the wall. The flow inside this interstice was then solved under the lubrication assumptions and fully described for a completely flooded interstice. Numerical results extend the analysis to higher Reynolds number. Finally, the effect of the upstream pressure on the onset of cavitation is studied, giving the initial location of the phenomenon and the relation between the upstream pressure and the flow rate in the interstice. It is shown that the flow in the interstice must become three-dimensional when cavitation takes place.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abdelgawad, M., Hassan, I. & Esmail, N. 2003 Transient behaviour of the viscous micropump. Microscale Therm. Engng 8, 361381.CrossRefGoogle Scholar
2. Abdelgawad, M., Hassan, I., Esmail, N. & Phutthavong, P. 2005 Numerical investigation of multistage viscous micropump configurations. Trans. ASME: J. Fluids Engng 127, 734742.Google Scholar
3. Ashmore, J., del Pino, C. & Mullin, T. 2005 Cavitation in a lubrication flow between a moving sphere and a boundary. Phys. Rev. Lett. 94, 124501.CrossRefGoogle Scholar
4. Ballal, B. Y. & Rivlin, R. S. 1976 Flow of a Newtonian fluid between eccentric rotating cylinders: inertial effects. Arch. Rat. Mech. Anal. 62 (3), 237294.CrossRefGoogle Scholar
5. Bearman, P. W. & Zdravkovich, M. M. 1978 Flow around a circular cylinder near a plane boundary. J. Fluid Mech. 89, 3347.CrossRefGoogle Scholar
6. Bhattacharyya, S., Mahapatra, S. & Smith, F. T. 2004 Fluid flow due to a cylinder rolling along ground. J. Fluids Struct. 19, 511523.CrossRefGoogle Scholar
7. Chauveau, F. 2002 Aérodynamique de l’avant corps d’une formule 1: Approche numérique. Thèse de doctorat (in French), Univ Sc. Tech. Lille1. France.Google Scholar
8. Cheng, M. & Luo, L. S. 2007 Characteristics of two-dimensional flow around a rotating circular cylinder near a plane wall. Phys. Fluids 19, 063601.CrossRefGoogle Scholar
9. Choi, H. I., Lee, Y. & Choi, D. H. 2010 Design optimization of a viscous micropump with two rotating cylinders for maximizing efficiency. Struct. Multidisc. Optim. 40, 537548.CrossRefGoogle Scholar
10. Coyle, D. J., Macosko, C. W. & Scriven, L. E. 1986 Film-splitting flows in forward roll coating. J. Fluid Mech. 171, 183207.CrossRefGoogle Scholar
11. Day, R. F. & Stone, H. A. 2000 Lubrification analysis and boundary integral simulations of a viscous micropump. J. Fluid Mech. 416, 197216.CrossRefGoogle Scholar
12. Decourtye, D., Sen, M. & Gad-el-Hak, M. 1998 Analysis of viscous micropumps and microturbines. Intl J. CFD 10, 1325.Google Scholar
13. Dipankar, A. & Sengupta, T. K. 2005 Flow past a circular cylinder in the vicinity of a plane wall. J. Fluids Struct. 20 (3), 403423.CrossRefGoogle Scholar
14. Finn, M. D. & Cox, S. M. 2001 Stokes flow in a mixer with changing geometry. J. Engng Maths 41, 7599.CrossRefGoogle Scholar
15. Gaskell, P. H., Savage, M. D., Summers, J. L. & Thompson, H. M. 1995 Modelling and analysis of meniscus roll coating. J. Fluid Mech. 298, 113137.CrossRefGoogle Scholar
16. Gaskell, P. H., Savage, M. D. & Thompson, H. M. 1998 Stagnation-saddle points and flow patterns in Stokes flow between contra-rotating cylinders. J. Fluid Mech. 370, 221247.CrossRefGoogle Scholar
17. Huang, W. X. & Sung, H. J. 2007 Vortex shedding from a circular cylinder near a moving wall. J. Fluids Struct. 23, 10641076.CrossRefGoogle Scholar
18. Jeffrey, D. J. & Onishi, Y. 1981 The slow motion of a cylinder next to a plane wall. Q. J. Mech. Appl. Maths 34, 129137.CrossRefGoogle Scholar
19. Jeffery, G. B. 1922 The rotation of two circular cylinders in a viscous fluid. Proc. R. Soc. Lond. A 101, 169174.Google Scholar
20. Kano, I. & Yagita, M. 2002 Flow around a rotating circular cylinder near a moving plane wall. JSME Intl J. B 45 (2), 259268.CrossRefGoogle Scholar
21. Matthews, M. T. & Hill, J. M. 2006 Lubrication analysis of the viscous micro/nano pump with slip. Microfluid. Nanofluid. 4, 439449.CrossRefGoogle Scholar
22. Matthews, M. T. & Hill, J. M. 2009 Asymptotic analysis of the viscous micro/nano pump at low Reynolds number. J. Engng Maths 63 (2), 279292.CrossRefGoogle Scholar
23. Moffatt, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 118.CrossRefGoogle Scholar
24. Nishino, T., Roberts, G. T. & Zhang, X. 2007 Vortex shedding from a circular cylinder near a moving ground. Phys. Fluids 19, 025103.CrossRefGoogle Scholar
25. Ouibrahim, A., Fruman, D. H. & Gaudemer, R. 1996 Vapour cavitation in very confined spaces for Newtonian and non Newtonian fluids. Phys. Fluids 8 (7), 19641971.CrossRefGoogle Scholar
26. Savage, M. D. 1982 Mathematical models for coating processes. J. Fluid Mech. 117, 443445.CrossRefGoogle Scholar
27. Schubert, G. 1967 Viscous flow near a cusped corner. J. Fluid Mech. 27, 647656.CrossRefGoogle Scholar
28. Seddon, J. R. T. & Mullin, T. 2006 Reverse rotation of a cylinder near a wall. Phys. Fluids 18, 041703.CrossRefGoogle Scholar
29. Sen, M., Wajerski, D. & Gad-el-Hak, M. 1996 A novel pump for MEMS application. J. Fluids Engng 118, 624627.CrossRefGoogle Scholar
30. Sharatchandra, M. C., Sen, M. & Gad-el-Hak, M. 1997 Navier–Stokes simulation of a novel viscous pump. J. Fluids Engng 119, 372382.CrossRefGoogle Scholar
31. Sharatchandra, M. C., Sen, M. & Gad-el-Hak, M. 1998 Thermal aspects of a novel viscous pump. J. Heat Transfer 120, 99107.CrossRefGoogle Scholar
32. Stewart, B., Hourigan, K., Thompson, M. & Leweke, T. 2006 Flow dynamics and forces associated with a cylinder rolling along a wall. Phys. Fluids 18, 111701.CrossRefGoogle Scholar
33. Stewart, B., Thompson, M., Leweke, T. & Hourigan, K. 2010 The wake behind a cylinder rolling on a wall at varying rotation rates. J. Fluid Mech. 648, 225256.CrossRefGoogle Scholar
34. Taylor, G. I. 1963 Cavitation of a viscous fluid in narrow passages. J. Fluid Mech. 16, 595619.CrossRefGoogle Scholar
35. Wakiya, S. 1975 Application of bipolar coordinates to the two-dimensional creeping motion of a liquid. Part II. J. Phys. Soc. Japan. 39 (6), 16031607.CrossRefGoogle Scholar
36. Zdravkovich, M. M. 1982 Forces on a circular cylinder near a plane wall. J. Appl. Ocean Res. 7 (4), 197201.CrossRefGoogle Scholar