Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T11:28:18.681Z Has data issue: false hasContentIssue false

Cyclic flame propagation in premixed combustion

Published online by Cambridge University Press:  23 October 2013

Philipp A. Boettcher*
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
Shyam K. Menon
Affiliation:
Mechanical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Brian L. Ventura
Affiliation:
Daniel Guggenheim School of Aerospace Engineering at the Georgia Institute of Technology, Atlanta, GA 30332, USA
Guillaume Blanquart
Affiliation:
Mechanical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Joseph E. Shepherd
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
*
Philipp Boettcher is currently an Assistant Research Professor at Drexel University’s Mechanical Engineering and Mechanics Department. Email address for correspondence: [email protected]

Abstract

In experiments of hot surface ignition and subsequent flame propagation, a puffing flame instability is observed in mixtures that are stagnant and premixed prior to ignition. By varying the size of the hot surface, power input, and combustion vessel volume, it was determined that the instability is a function of the interaction of the flame, with the fluid flow induced by the combustion products rather than the initial plume established by the hot surface. Pressure ranges from 25 to 100 kPa and mixtures of n-hexane/air with equivalence ratios between $\phi = 0. 58$ and 3.0 at room temperature were investigated. Equivalence ratios between $\phi = 2. 15$ and 2.5 exhibited multiple flame and equivalence ratios above $\phi = 2. 5$ resulted in puffing flames at atmospheric pressure. The phenomenon is accurately reproduced in numerical simulations and a detailed flow field analysis revealed competition between the inflow velocity at the base of the flame and the flame propagation speed. The increasing inflow velocity, which exceeds the flame propagation speed, is ultimately responsible for creating a puff. The puff is then accelerated upward, allowing for the creation of the subsequent instabilities. The frequency of the puff is proportional to the gravitational acceleration and inversely proportional to the flame speed. A scaling relationship describes the dependence of the frequency on gravitational acceleration, hot surface diameter, and flame speed. This relation shows good agreement for rich n-hexane/air and lean hydrogen/air flames, as well as lean hexane/hydrogen/air mixtures.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bane, S. P. M., Shepherd, J. E., Kwon, E. & Day, A. C. 2011 Statistical analysis of electrostatic spark ignition of lean H2/O2/Ar mixtures. Intl J. Hydrogen Energy 36 (3), 23442350.CrossRefGoogle Scholar
Blanquart, G., Pepiot-Desjardins, P. & Pitsch, H. 2009 Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combust. Flame 156, 588607.CrossRefGoogle Scholar
Boettcher, P. A. 2012 Thermal ignition. PhD thesis, California Institute of Technology.Google Scholar
Buckmaster, J. & Peters, N. 1988 The infinite candle and its stability: a paradigm for flickering diffusion flames. In Twenty-First Symposium (International) on Combustion, pp. 18291836. Elsevier.Google Scholar
Cetegen, B. M. & Ahmed, T. A. 1993 Experiments on the periodic instability of buoyant plumes and pool fires. Combust. Flame 93 (1–2), 157184.CrossRefGoogle Scholar
Chamberlin, D. S. & Rose, A. 1948 The flicker of luminous flames. Proc. Symp. Combust. 1, 2732.Google Scholar
Cheng, R. K., Bédat, B. & Kostiuk, L. W. 1999 Effects of buoyancy on lean premixed V-flames. Part I. Laminar and turbulent flame structures. Combust. Flame 116 (3), 360375.CrossRefGoogle Scholar
Davis, S. G. & Law, C. K. 1998a Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combust. Sci. Technol. 140 (1–6), 427449.Google Scholar
Davis, S. G. & Law, C. K. 1998b Laminar flame speeds and oxidation kinetics of iso-octane–air and $n$ -heptane–air flames. In Twenty-Seventh Symposium (International) on Combustion, pp. 521527. Elsevier.Google Scholar
Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H. 2008 Higher-order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227, 71257159.Google Scholar
Durao, D. F. G. & Whitelaw, J. H. 1974 Instantaneous velocity and temperature measurements in oscillating diffusion flames. Proc. R. Soc. Lond. A 338 (1615), 479501.Google Scholar
Durox, D., Baillot, F., Scouflaire, P. & Prud’Homme, R. 1990 Some effects of gravity on the behaviour of premixed flames. Combust. Flame 82 (1), 6674.Google Scholar
Durox, D., Yuan, T. & Villermaux, E. 1997 The effect of buoyancy on flickering in diffusion flames. Combust. Sci. Technol. 124 (1–6), 277294.Google Scholar
Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12, 14221429.Google Scholar
Grant, A. J. & Jones, J. M. 1975 Low-frequency diffusion flame oscillations. Combust. Flame 25, 153160.CrossRefGoogle Scholar
Guahk, Y. T., Lee, D. K., Oh, K. C. & Shin, H. D. 2009 Flame-intrinsic Kelvin–Helmholtz instability of flickering premixed flames. Energy & Fuels 23 (8), 38753884.Google Scholar
Huang, Y., Sung, C. J. & Eng, J. A. 2004 Laminar flame speeds of primary reference fuels and reformer gas mixtures. Combust. Flame 139 (3), 239251.CrossRefGoogle Scholar
Ji, C., Dames, E., Wang, Y. L., Wang, H. & Egolfopoulos, F. N. 2010 Propagation and extinction of premixed ${\mathrm{C} }_{5} $ ${\mathrm{C} }_{12} \hspace{0.167em} n$ -alkane flames. Combust. Flame 157 (2), 277287.Google Scholar
Kelley, A. P., Smallbone, A. J., Zhu, D. L. & Law, C. K. 2011 Laminar flame speeds of ${\mathrm{C} }_{5} $ to ${\mathrm{C} }_{8} \hspace{0.167em} n$ -alkanes at elevated pressures: experimental determination, fuel similarity, and stretch sensitivity. Proc. Combust. Inst. 33, 963970.Google Scholar
Kimura, I. 1965 Stability of laminar jet flames. In Tenth Symposium (International) on Combustion, pp. 12951300. Elsevier.Google Scholar
Kint, J. H. 1970 A noncatalytic coating for platinum–rhodium thermocouples. Combust. Flame 14 (2), 279281.CrossRefGoogle Scholar
Kostiuk, L. W. & Cheng, R. K. 1995 The coupling of conical wrinkled laminar flames with gravity. Combust. Flame 103 (1–2), 2740.Google Scholar
Kumar, K., Freeh, J. E., Sung, C. J. & Huang, Y. 2007 Laminar flame speeds of preheated iso-octane/ ${\mathrm{O} }_{2} / {\mathrm{N} }_{2} $ and $n$ -heptane/ ${\mathrm{O} }_{2} / {\mathrm{N} }_{2} $ mixtures. J. Propul. Power 23 (2), 428436.Google Scholar
Leonard, B. P. 1979 A stable and accurate convective modelling approach based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Engng 19, 5998.Google Scholar
Menon, S. K., Boettcher, P. A. & Blanquart, G. 2013 Enthalpy based approach to capture heat transfer effects in premixed combustion. Combust. Flame 160 (7), 12421253.CrossRefGoogle Scholar
Narayanaswamy, K., Blanquart, G. & Pitsch, H. 2010 A consistent chemical mechanism for oxidation of substituted aromatic species. Combust. Flame 157 (10), 18791898.Google Scholar
Oijen, J. A. van & de Goey, L. P. H. 2000 Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161, 113137.Google Scholar
Palm-Leis, A. & Strehlow, R. A. 1969 On the propagation of turbulent flames. Combust. Flame 13 (2), 111129.Google Scholar
Peters, N. 1988 Laminar flamelet concepts in turbulent combustion. Twenty-First Symposium (International) on Combustion 12311250.Google Scholar
Pierce, C. D. 2001 Progress-variable approach for large-eddy simulation of turbulent combustion. PhD thesis, Stanford University.Google Scholar
Pierce, C. D. & Moin, P. 2004 Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504 (1), 7397.Google Scholar
Shen, H. P. S., Steinberg, J., Vanderover, J. & Oehlschlaeger, M. A. 2009 A shock tube study of the ignition of $n$ -heptane, $n$ -decane, $n$ -dodecane, and $n$ -tetradecane. Energy Fuels 23, 24822489.Google Scholar
Shepherd, I. G., Cheng, R. K. & Day, M. S. 2005 The dynamics of flame flicker in conical premixed flames: an experimental and numerical study. Tech. Rep. LBNL-59249, Lawrence Berkeley National Laboratory.Google Scholar
Sivashinsky, G. I. 2002 Some developments in premixed combustion modelling. Proc. Combust. Inst. 29 (2), 17371761.Google Scholar
Strawa, A. & Cantwell, B. 1989 Investigation of an excited jet diffusion flame at elevated pressure. J. Fluid Mech. 200, 309336.Google Scholar
Tanoue, K., Ogura, Y., Takayanagi, M. & Nishimura, T. 2010 Measurement of temperature distribution for the flickering phenomenon around the premixed flame by using laser speckle method. J. Visual. 13 (3), 183185.Google Scholar
Toong, T., Salant, R. F., Stopford, J. M. & Anderson, G. Y. 1965 Mechanisms of combustion instability. In Tenth Symposium (International) on Combustion, pp. 13011313. Elsevier.Google Scholar
Tran, L. S., Glaude, P. A. & Battin-Leclerc, F. 2013 Experimental study of the structure of laminar premixed flames of ethanol/methane/oxygen/argon. Combust. Explos. Shock Waves 49, 1118.Google Scholar
Uberoi, M. S., Kuethe, A. M. & Menkes, H. R. 1958 Flow field of a Bunsen flame. Phys. Fluids 1 (2), 150158.CrossRefGoogle Scholar
Van Lipzig, J. P. J., Nilsson, E. J. K., De Goey, L. P. H. & Konnov, A. A. 2011 Laminar burning velocities of $n$ -heptane, iso-octane, ethanol and their binary and tertiary mixtures. Fuel 90, 27732781.Google Scholar
Wang, H., Dames, E., Sirjean, B., Sheen, D. A., Tangko, R., Violi, A., Lai, J. Y. W., Egolfopoulos, F. N., Davidson, D. F., Hanson, R. K., Bowman, C. T., Law, C. K., Tsang, W., Cernansky, N. P., Miller, D. L. & Lindstedt, R. P. 2010 A high-temperature chemical kinetic model of $n$ -alkane (up to $n$ -dodecane), cyclohexane, and methyl-, ethyl-, $n$ -propyl and $n$ -butyl-cyclohexane oxidation at high temperatures. JetSurF version 2.0, September 19, 2010.Google Scholar
Westbrook, C. K., Pitz, W. J., Herbinet, O., Curran, H. J. & Silke, E. J. 2009 A detailed chemical kinetic reaction mechanism for $n$ -alkane hydrocarbons from $n$ -octane to $n$ -hexadecane. Combust. Flame 156, 181199.Google Scholar
Wyzgolik, A. & Baillot, F. 2008 Non-premixed lifted flame stabilization coupled with vortex structures in a coaxial jet. Combust. Sci. Technol. 180, 19561971.Google Scholar
Zabetakis, M. G. 1965 Flammability characteristics of combustible gases and vapours. Bulletin 627, Bureau of Mines.Google Scholar
Zukoski, E. E. 1986 Fluid dynamic aspects of room fires. In Proceedings of First International Symposium Fire Safety Science.Google Scholar
Supplementary material: File

Boettcher et al. Supplementary Material

Data

Download Boettcher et al. Supplementary Material(File)
File 146.5 KB
Supplementary material: File

Boettcher et al. Supplementary Material

Data

Download Boettcher et al. Supplementary Material(File)
File 87.6 KB