Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T03:18:04.888Z Has data issue: false hasContentIssue false

Curved surface effect on high-speed droplet impingement

Published online by Cambridge University Press:  21 December 2020

Wangxia Wu
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing100081, PR China
Qingquan Liu
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing100081, PR China
Bing Wang*
Affiliation:
School of Aerospace Engineering, Tsinghua University, Beijing100084, PR China
*
Email address for correspondence: [email protected]

Abstract

In the present study, high-speed droplet impingement on typical curved surfaces is numerically investigated to analyse the inherent complex wave structures and cavitation. A three-component compressible multi-phase flow model is utilised considering fluid phase transitions, but the calculation of coupling with the solid structure is neglected. A detailed comparative analysis is presented of the dynamic processes, including the evolution of confined water-hammer shock waves, occurrence and collapse of cavities and spatiotemporal pressure distribution on concave, convex and flat surfaces. The synclastic curvature of a concave surface can increase a shock wave's strength, but an incongruous curvature can decrease its strength and a flat surface has moderate intensity. Both homogenous and near-surface heterogeneous cavitation can occur in three cases; the cavitation is the strongest in the concave case and, hence, the collapse waves are strongest running toward the surface. The pressure wave distributions and their evolutions are more complex in curved surface impacts than in flat surfaces. Both the confined shock wave inside the impacted droplet and near-surface lateral jet are weakest, and the near-surface cavitation level is also lowest in the convex case. Therefore, it can be inferred that a convex surface can reduce the possible surface damage during high-speed impingement. The two-dimensional axisymmetric numerical results show that both the converging and diverging motions of waves intensify, which further increases the curvature influence on concave surface damage.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, W. F. 1999 Rain impact retrospective and vision for the future. Wear 233, 2538.CrossRefGoogle Scholar
Ahmad, M. 2009 Experimental Assessment of Droplet Impact Erosion of Low-Pressure Steam Turbine Blades. Shaker.Google Scholar
Ahmad, M., Casey, M. & Sürken, N. 2009 Experimental assessment of droplet impact erosion resistance of steam turbine blade materials. Wear 267 (9–10), 16051618.CrossRefGoogle Scholar
Ando, K., Colonius, T. & Brennen, C. E. 2011 Numerical simulation of shock propagation in a polydisperse bubbly liquid. Intl J. Multiphase Flow 37 (6), 596608.CrossRefGoogle Scholar
Ball, G. J., Howell, B. P., Leighton, T. G. & Schofield, M. J. 2000 Shock-induced collapse of a cylindrical air cavity in water: a free-lagrange simulation. Shock Waves 10 (4), 265276.CrossRefGoogle Scholar
Bergant, A., Simpson, A. R. & Tijsseling, A. S. 2006 Water hammer with column separation: a historical review. J. Fluids Struct. 22 (2), 135171.CrossRefGoogle Scholar
Betney, M. R., Tully, B., Hawker, N. A. & Ventikos, Y. 2015 Computational modelling of the interaction of shock waves with multiple gas-filled bubbles in a liquid. Phys. Fluids 27 (3), 036101.CrossRefGoogle Scholar
Blake, J. R. & Gibson, D. C. 1981 Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111 (1), 123140.CrossRefGoogle Scholar
Bowden, F. P. & Field, J. E. 1964 The brittle fracture of solids by liquid impact, by solid impact, and by shock. Proc. R. Soc. Lond. A 282 (1390), 331352.Google Scholar
Bremond, N., Arora, M., Ohl, C. & Lohse, D. 2006 Controlled multibubble surface cavitation. Phys. Rev. Lett. 96 (22), 224501.CrossRefGoogle ScholarPubMed
Brennen, C. E. 2013 Cavitation and Bubble Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Burson-Thomas, C. B., Wellman, R., Harvey, T. J. & Wood, R. J. K. 2019 a Importance of surface curvature in modeling droplet impingement on fan blades. Trans. ASME: J. Engng Gas Turbines Power 141 (3), 031005.Google Scholar
Burson-Thomas, C. B., Wellman, R., Harvey, T. J. & Wood, R. J. K. 2019 b Water droplet erosion of aeroengine fan blades: the importance of form. Wear 426, 507517.CrossRefGoogle Scholar
Caupin, F. & Herbert, E. 2006 Cavitation in water: a review. C. R. Phys. 7 (9–10), 10001017.CrossRefGoogle Scholar
Charalampous, G. & Hardalupas, Y. 2017 Collisions of droplets on spherical particles. Phys. Fluids 29 (10), 103305.CrossRefGoogle Scholar
Chen, H., Liu, X., Wang, K., Liu, H. & Shen, S. 2019 Numerical study on dynamic characteristics of double droplets impacting a super-hydrophobic tube with different impact velocities. Intl J. Comput. Fluid Dyn. 33 (5), 222233.CrossRefGoogle Scholar
Chizhov, A. V. & Schmidt, A. A. 2000 Impact of a high-velocity drop on an obstacle. Tech. Phys. 45 (12), 15291537.CrossRefGoogle Scholar
Cook, S. S. 1928 Erosion by water-hammer. Proc. R. Soc. Lond. A 119 (783), 481488.Google Scholar
Dear, J. P. & Field, J. E. 1988 High-speed photography of surface geometry effects in liquid/solid impact. J. Appl. Phys. 63 (4), 10151021.CrossRefGoogle Scholar
Evans, A. G., Ito, Y. M. & Rosenblatt, M. 1980 Impact damage thresholds in brittle materials impacted by water drops. J. Appl. Phys. 51 (5), 24732482.CrossRefGoogle Scholar
Field, J. E., Camus, J. J., Tinguely, M., Obreschkow, D. & Farhat, M. 2012 Cavitation in impacted drops and jets and the effect on erosion damage thresholds. Wear 290, 154160.CrossRefGoogle Scholar
Field, J. E., Dear, J. P. & Ogren, J. E. 1989 The effects of target compliance on liquid drop impact. J. Appl. Phys. 65 (2), 533540.CrossRefGoogle Scholar
Field, J. E., Lesser, M. B. & Dear, J. P. 1985 Studies of two-dimensional liquid-wedge impact and their relevance to liquid-drop impact problems. Proc. R. Soc. Lond. A 401 (1821), 225249.Google Scholar
Fujikawa, S. & Akamatsu, T. 1980 Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 97 (03), 481512.CrossRefGoogle Scholar
Fuster, D. & Colonius, T. 2011 Modelling bubble clusters in compressible liquids. J. Fluid Mech. 688, 352389.CrossRefGoogle Scholar
Gottlieb, S. & Shu, C. W. 1998 Total variation diminishing Runge–Kutta schemes. Maths Comput. Am. Math. Soc. 67 (221), 7385.CrossRefGoogle Scholar
Haller, K. K., Poulikakos, D., Ventikos, Y. & Monkewitz, P. 2003 a Shock wave formation in droplet impact on a rigid surface: lateral liquid motion and multiple wave structure in the contact line region. J. Fluid Mech. 490, 114.CrossRefGoogle Scholar
Haller, K. K., Ventikos, Y. & Poulikakos, D. 2003 b Wave structure in the contact line region during high speed droplet impact on a surface: solution of the Riemann problem for the stiffened gas equation of state. J. Appl. Phys. 93 (5), 30903097.CrossRefGoogle Scholar
Haller, K. K., Ventikos, Y., Poulikakos, D. & Monkewitz, P. 2002 Computational study of high-speed liquid droplet impact. J. Appl. Phys. 92 (5), 28212828.CrossRefGoogle Scholar
Han, E., Hantke, M. & Müller, S. 2017 Efficient and robust relaxation procedures for multi-component mixtures including phase transition. J. Comput. Phys. 338, 217239.CrossRefGoogle Scholar
Han, Y., Xie, Y. & Zhang, D. 2012 Numerical study on high-speed impact between a water droplet and a deformable solid surface. In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, pp. 675–683. American Society of Mechanical Engineers Digital Collection.CrossRefGoogle Scholar
Hardalupas, Y., Taylor, A. M. K. P. & Wilkins, J. H. 1999 Experimental investigation of sub-millimetre droplet impingement on to spherical surfaces. Intl J. Heat Fluid Flow 20 (5), 477485.CrossRefGoogle Scholar
Herbert, E., Balibar, S. & Caupin, F. 2006 Cavitation pressure in water. Phys. Rev. E 74 (4), 041603.CrossRefGoogle ScholarPubMed
Heymann, F. J. 1969 High-speed impact between a liquid drop and a solid surface. J. Appl. Phys. 40 (13), 51135122.CrossRefGoogle Scholar
Huang, Y. C., Hammitt, F. G. & Mitchell, T. M. 1973 Note on shock-wave velocity in high-speed liquid-solid impact. J. Appl. Phys. 44 (4), 18681869.CrossRefGoogle Scholar
Jowkar, S. & Morad, M. R. 2019 Water drop impact on a semi-cylindrical convex hot surface for a diameter ratio of unity. Exp. Therm. Fluid Sci. 106, 6877.CrossRefGoogle Scholar
Khojasteh, D., Bordbar, A., Kamali, R. & Marengo, M. 2017 Curvature effect on droplet impacting onto hydrophobic and superhydrophobic spheres. Intl J. Comput. Fluid Dyn. 31 (6–8), 310323.CrossRefGoogle Scholar
Koch, K. & Grichnik, R. 2016 Influence of surface structure and chemistry on water droplet splashing. Phil. Trans. R. Soc. A 374 (2073), 20160183.CrossRefGoogle ScholarPubMed
Kondo, T. & Ando, K. 2016 One-way-coupling simulation of cavitation accompanied by high-speed droplet impact. Phys. Fluids 28 (3), 033303.CrossRefGoogle Scholar
Kondo, T. & Ando, K. 2019 Simulation of high-speed droplet impact against a dry/wet rigid wall for understanding the mechanism of liquid jet cleaning. Phys. Fluids 31 (1), 013303.CrossRefGoogle Scholar
Korobkin, A. A. & Pukhnachov, V. V. 1988 Initial stage of water impact. Annu. Rev. Fluid Mech. 20 (1), 159185.CrossRefGoogle Scholar
Kyriazis, N., Koukouvinis, P. & Gavaises, M. 2018 Modelling cavitation during drop impact on solid surfaces. Adv. Colloid Interface Sci. 260, 4664.CrossRefGoogle ScholarPubMed
Lesser, M. B. 1981 Analytic solution of liquid-drop impact problems. Proc. R. Soc. Lond. A 377 (1770), 289308.Google Scholar
Lesser, M. 1995 Thirty years of liquid impact research: a tutorial review. Wear 186, 2834.CrossRefGoogle Scholar
Lesser, M. B. & Field, J. E. 1983 The impact of compressible liquids. Annu. Rev. Fluid Mech. 15 (1), 97122.CrossRefGoogle Scholar
Li, R., Mori, M. & Ninokata, H. 2012 A calculation methodology proposed for liquid droplet impingement erosion. Nucl. Engng Des. 242, 157163.CrossRefGoogle Scholar
Li, T., Zhang, L., Zhang, X. & Li, H. 2018 Effect of curved surfaces on the impacting nano-droplets and their shape control: a molecular dynamics simulation study. Appl. Surf. Sci. 454, 192200.CrossRefGoogle Scholar
Liu, X., Zhao, Y., Chen, S., Shen, S. & Zhao, X. 2017 Numerical research on the dynamic characteristics of a droplet impacting a hydrophobic tube. Phys. Fluids 29 (6), 062105.CrossRefGoogle Scholar
Maeda, K. & Colonius, T. 2019 Bubble cloud dynamics in an ultrasound field. J. Fluid Mech. 862, 11051134.CrossRefGoogle Scholar
Mandre, S., Mani, M. & Brenner, M. P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102 (13), 134502.CrossRefGoogle ScholarPubMed
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37 (37), 239261.CrossRefGoogle Scholar
Niu, Y. Y. & Wang, H. W. 2016 Simulations of the shock waves and cavitation bubbles during a three-dimensional high-speed droplet impingement based on a two-fluid model. Comput. Fluids 134, 196214.CrossRefGoogle Scholar
Nykteri, G., Koukouvinis, P., Avila, S. R. G., Ohl, C. D. & Gavaises, M. 2019 Numerical investigation of high-speed droplet impact using a multiscale two-fluid approach. In Conference: 29th Conference on Liquid Atomization and Spray Systems.Google Scholar
Obreschkow, D., Dorsaz, N., Kobel, P., de Bosset, A., Tinguely, M., Field, J. & Farhat, M. 2011 Confined shocks inside isolated liquid volumes: a new path of erosion? Phys. Fluids 23 (10), 101702.CrossRefGoogle Scholar
Okada, T., Iwai, Y., Hattori, S. & Tanimura, N. 1995 Relation between impact load and the damage produced by cavitation bubble collapse. Wear 184 (2), 231239.CrossRefGoogle Scholar
Okada, H., Uchida, S., Naitoh, M., Xiong, J. & Koshizuka, S. 2011 Evaluation methods for corrosion damage of components in cooling systems of nuclear power plants by coupling analysis of corrosion and flow dynamics (v) flow-accelerated corrosion under single-and two-phase flow conditions. J. Nucl. Sci. Technol. 48 (1), 6575.CrossRefGoogle Scholar
Rajesh, R. S., Naveen, P. T., Krishnakumar, K. & Ranjith, S. K. 2019 Dynamics of single droplet impact on cylindrically-curved superheated surfaces. Exp. Therm. Fluid Sci. 101, 251262.CrossRefGoogle Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 6193.CrossRefGoogle Scholar
Rochester, M. C. & Brunton, J. H. 1974 Influence of physical properties of the liquid on the erosion of solids. In Erosion, Wear, and Interfaces with Corrosion (ed. A. Thiruvengadam), pp. 128–147. ASTM International.CrossRefGoogle Scholar
Rossinelli, D., Hejazialhosseini, B., Hadjidoukas, P., Bekas, C., Curioni, A., Bertsch, A., Futral, S., Schmidt, S. J., Adams, N. A. & Koumoutsakos, P. 2013 11 PFLOP/s simulations of cloud cavitation collapse. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. Association for Computing Machinery.CrossRefGoogle Scholar
Sanada, T., Ando, K. & Colonius, T. 2011 A computational study of high-speed droplet impact. Fluid Dyn. Mater. Process. 7 (4), 329340.Google Scholar
Saurel, R., Petitpas, F. & Abgrall, R. 2008 Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607, 313350.CrossRefGoogle Scholar
Thompson, K. W. 1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68 (1), 124.CrossRefGoogle Scholar
Tiwari, A., Pantano, C. & Freund, J. B. 2015 Growth-and-collapse dynamics of small bubble clusters near a wall. J. Fluid Mech. 775, 123.CrossRefGoogle Scholar
Tomita, Y., Robinson, P. B., Tong, R. P. & Blake, J. R. 2002 Growth and collapse of cavitation bubbles near a curved rigid boundary. J. Fluid Mech. 466, 259283.CrossRefGoogle Scholar
Toro, E. F. 2013 Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media.Google Scholar
Wang, B., Xiang, G. M. & Hu, X. Y. 2018 An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows. Intl J. Multiphase Flow 104, 2031.CrossRefGoogle Scholar
Wu, W. X., Wang, B. & Xiang, G. M. 2019 Impingement of high-speed cylindrical droplets embedded with an air/vapour cavity on a rigid wall: numerical analysis. J. Fluid Mech. 864, 10581087.CrossRefGoogle Scholar
Wu, W. X., Xiang, G. M. & Wang, B. 2018 On high-speed impingement of cylindrical droplets upon solid wall considering cavitation effects. J. Fluid Mech. 857, 851877.CrossRefGoogle Scholar
Xiong, J., Koshizuka, S. & Sakai, M. 2010 Numerical analysis of droplet impingement using the moving particle semi-implicit method. J. Nucl. Sci. Technol. 47 (3), 314321.CrossRefGoogle Scholar
Xiong, J., Koshizuka, S. & Sakai, M. 2011 Investigation of droplet impingement onto wet walls based on simulation using particle method. J. Nucl. Sci. Technol. 48 (1), 145153.CrossRefGoogle Scholar
Yamashita, T. & Ando, K. 2019 Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: role of cavitation bubbles as physical cleaning agents. Ultrason. Sonochem. 52, 268279.CrossRefGoogle ScholarPubMed
Zein, A. 2010 Numerical methods for multiphase mixture conservation laws with phase transition. PhD thesis, Magdeburg Univ., 2010.Google Scholar
Zein, A., Hantke, M. & Warnecke, G. 2013 On the modeling and simulation of a laser-induced cavitation bubble. Intl J. Numer. Meth. Fluids 73 (2), 172203.CrossRefGoogle Scholar
Zhu, Y., Liu, H. R., Mu, K., Gao, P., Ding, H. & Lu, X. Y. 2017 Dynamics of drop impact onto a solid sphere: spreading and retraction. J. Fluid Mech. 824, R3.CrossRefGoogle Scholar