Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T13:49:44.436Z Has data issue: false hasContentIssue false

Curvature and pressure-gradient effects on a small-defect wake

Published online by Cambridge University Press:  21 April 2006

A. Nakayama
Affiliation:
Aerodynamics Research and Technology Department, Douglas Aircraft Company, Long Beach, CA 90846, USA

Abstract

A fully developed two-dimensional turbulent wake was deflected by an airfoil-like thin plate placed at small angles in the external flow. The response of the mean-flow and turbulence properties of the wake to the ‘mild’ pressure gradient and the ‘mild’ streamline curvature caused by the deflection is studied. Owing to the small defect velocity, the extra strain rates are large compared with the main shear strain and the Reynolds stresses are strongly influenced by both the pressure gradient and the streamline curvature. The defect velocity relative to an appropriately chosen ‘potential-flow velocity’, and the mean vorticity, however, are not as strongly influenced by the curvature. Changes in the magnitudes of the Reynolds-stress components are much larger than would be caused by the simple rotation of coordinates aligned with the wake path. Most turbulence-model parameters are influenced significantly, while some pure turbulence parameters, such as the Taylor microscale, are relatively uninfluenced. The rapid and lagged responses are apparent and the terms in the transport equation for turbulent kinetic energy indicate that the response of the production terms is almost instantaneous, while the diffusion and dissipation terms are delayed.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, E. W. & Johnston, J. P. 1984 Trans. ASME J: J. Engng Gas Turbines & Power 106, 143.
Akdag, V., Nakayama, A., Liu, B., Kilik, E. & Unt, H. 1984 Automated hot-wire measurements using a microcomputer. Mech. Engng Dept Rep. ME-84–5, California State University, Long Beach.Google Scholar
Bradshaw, P. 1969 J. Fluid Mech. 36, 177.
Bradshaw, P. 1973 Effects of streamline curvature on turbulent flow. AGARDograph 169.
Bradshaw, P. 1975 Trans. ASME I: J. Fluids Engng 971, 146
Castro, I. & Bradshaw, P. 1976 J. Fluid Mech. 73, 265.
Fabris, G. 1979 J. Fluid Mech. 94, 673.
Fabris, G. 1983 Phys. Fluids 26, 422.
Gartshore, I. S. 1967 J. Fluid Mech. 30, 547.
Gibson, M. M. & Rodi, W. 1981 J. Fluid Mech. 103, 161.
Gillis, J. C. & Johnston, J. P. 1983 J. Fluid Mech. 135, 123.
Guitton, D. E. & Newman, B. G. 1977 J. Fluid Mech. 81, 155.
Hill, P. G., Schaub, U. W. & Senoo, Y. 1963 Trans. ASME E: J. Appl. Mech. 30, 518
Hunt, J. C. R. 1978 Fluid Dyn. Trans. 9, 121.
Hunt, I. A. & Joubert, P. N. 1979 J. Fluid Mech. 91, 633.
Johnson, D. A. & King, L. S. 1984 AIAA paper 84–0175.
Koyama, H. 1983 Proc. 4th Symp. on Turbulent Shear Flows, University of Karlsruhe, Karlsruhe, F.R. Germany, p. 6.32.
Launder, B. R., Reece, G. J. & Rodi, W. 1975 J. Fluid Mech. 68, 537.
Margolis, D. O. & Lumley, J. L. 1965 Phys. Fluids 8, 1775.
Muck, K. C., Hoffman, P. H. & Bradshaw, P. 1985 J. Fluid Mech. 161, 347.
Narasimha, R. & Prabhu, A. 1972 J. Fluid Mech. 54, 1.
Ramaprian, B. R. & Shivaprasad, B. G. 1978 J. Fluid Mech. 85, 273.
Rodi, W. & Scheuerer, G. 1983 Phys. Fluids 26, 1422.
Savill, A. M. 1982 Proc. Int. Symp. on Refined Modelling of Flows, Paris, France, p. 219.
Savill, A. M. 1983 In Structure of Complex Turbulent Shear Flow (ed. R. Dumas & L. Fulachier). Springer.
Shizawa, T. & Honami, S. 1983 4th Symp. on Turbulent Shear Flows, University of Karlsruhe, Karlsruhe, F. R. Germany, p. 6.38.
Smits, A. J. & Joubert, P. N. 1981 J. Ship Res. 26, 135.
Smits, A. J. & Wood, D. H. 1985 Ann. Rev. Fluid Mech. 17, 321.
Smits, A. J., Young, S. T. B. & Bradshaw, P. 1979 J. Fluid Mech. 94, 209.
Sreenivasan, K. R. 1985 J. Fluid Mech. 154, 187.
So, R. M. C. & Mellor, G. L. 1973 J. Fluid Mech. 60, 43.
Townsend, A. A. 1949 Austral. J. Sci. Res. 2, 451.
Townsend, A. A. 1976 Structure of Turbulent Shear Flows, 2nd edn. Cambridge University Press.
Townsend, A. A. 1980 J. Fluid Mech. 98, 171.
Uberoi, M. S. & Freymuth, P. 1969 Phys. Fluids 12, 1359.