Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T22:02:02.086Z Has data issue: false hasContentIssue false

Cross-stream migration of non-spherical particles in a second-order fluid – theories of particle dynamics in arbitrary quadratic flows

Published online by Cambridge University Press:  15 May 2020

Cheng-Wei Tai
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN47907, USA
Shiyan Wang
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN47907, USA
Vivek Narsimhan*
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN47907, USA
*
Email address for correspondence: [email protected]

Abstract

Particle migration in viscoelastic suspensions is vital in many applications in the biomedical community and the chemical/oil industries. Previous studies have provided insight into the motion of spherical particles in simple viscoelastic flows, yet the combined effect of more complex flow profiles and particle shapes is under-explored. Here, we develop approximate analytical expressions for the polymeric force and torque on an arbitrarily shaped particle in a second-order fluid, subject to a general quadratic flow field. This model is exact for the case when the first and second normal stress coefficients satisfy $\unicode[STIX]{x1D713}_{1}=-2\unicode[STIX]{x1D713}_{2}$. Under this assumption, we examine how particle shape alters cross-stream particle migration (i.e. lift) and particle orientation in both shear- and pressure-driven flows. In shear-driven flows, we observe that spheroidal particles adjust their orientation to align their longer axis along the vorticity direction, although significant deviations from slender-body theories occur for finite aspect ratios. In a slit-like pressure-driven flow, we identify scaling theories to quantify how the particle lift depends on shape for a wide variety of shapes. We find that prolate particles slowly transition to a log-rolling state as they approach the flow centre, with the lift initially being larger than that of an equal-volume sphere, but then becoming smaller as log-rolling emerges. The net effect is a smaller average migration speed for particles with larger aspect ratio. Lastly, we discuss future directions for experimental studies on particle dynamics as well as directions to extend the current work towards more complicated systems.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ardekani, A. M., Rangel, R. H. & Joseph, D. D. 2007 Motion of a sphere normal to a wall in a second-order fluid. J. Fluid Mech. 587, 163172.CrossRefGoogle Scholar
Ardekani, A. M., Rangel, R. H. & Joseph, D. D. 2008 Two spheres in a free stream of a second-order fluid. Phys. Fluids 20 (6), 063101.CrossRefGoogle Scholar
Asghari, M., Serhatlioglu, M., Ortac, B., Solmaz, M. E. & Elbuken, C. 2017 Sheathless microflow cytometry using viscoelastic fluids. Sci. Rep.-UK 7 (1), 114.Google ScholarPubMed
Bartram, E., Goldsmith, H. L. & Mason, S. G. 1975 Particle motions in non-Newtonian media III. Further observations in elasticoviscous fluids. Rheol. Acta 14, 776782.CrossRefGoogle Scholar
Bhagat, A. A. S., Kuntaegowdanahalli, S. S., Kaval, N., Seliskar, C. J. & Papautsky, I. 2010 Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed. Microdevices 12, 187195.CrossRefGoogle ScholarPubMed
Bird, R. B., Curtiss, C. F. & Armstrong, R. C. 1987 Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, John Wiley & Sons, Inc.Google Scholar
Bird, R. B. & Wiest, J. M. 1995 Constitutive equations for polymeric liquids. Annu. Rev. Fluid Mech. 27, 169193.CrossRefGoogle Scholar
Brunn, P. 1976 The slow motion of a sphere in a second-order fluid. Rheol. Acta 15 (3–4), 163171.CrossRefGoogle Scholar
Brunn, P. 1977 The slow motion of a rigid particle in a second-order fluid. J. Fluid Mech. 82 (3), 529547.CrossRefGoogle Scholar
Brunn, P. 1979 The motion of a slightly deformed sphere in a viscoelastic fluid. Rheol. Acta 18, 229243.CrossRefGoogle Scholar
Coleman, B. D. & Noll, W. 1960 An approximation theorem for functionals, with applications in continuum mechanics. Arch. Rat. Mech. Anal. 6 (1), 355370.CrossRefGoogle Scholar
Dabade, V., Marath, N. K. & Subramanian, G. 2015 Effects of inertia and viscoelasticity on sedimenting anistropic particles. J. Fluid Mech. 778, 133188.CrossRefGoogle Scholar
D’Avino, G., Greco, F. & Maffettone, P. L. 2017 Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu. Rev. Fluid Mech. 49, 341360.CrossRefGoogle Scholar
D’Avino, G., Hulsen, M. A., Greco, F. & Maffettone, P. L. 2014 Bistablility and metabistability scenario in the dynamics of an ellipsoid particle in a sheared viscoelastic fluid. Phys. Rev. E 89, 043006.Google Scholar
D’Avino, G., Hulsen, M. A., Greco, F. & Maffettone, P. L. 2019 Numerical simulations on the dynamics of a spheroid in a viscoelastic liquid in a wide-slit microchannel. J. Non-Newtonian Fluid Mech. 263, 3341.CrossRefGoogle Scholar
Del Giudice, F., D’Avino, G., Greco, F., Netti, P. A. & Maffettone, P. L. 2015 Effect of fluid rheology on particle migration in a square-shaped microchannel. Microfluid Nanofluid 19, 95104.CrossRefGoogle Scholar
Del Giudice, F., Sathish, S., D’Avino, G. & Shen, A. Q. 2017 ‘From the edge to the center’: viscoelastic migration of particles and cells in a strongly shear-thinning liquid flowing in a microchannel. Anal. Chem. 89, 1314613159.CrossRefGoogle Scholar
Feng, J., Joseph, D. D., Glowinski, R. & Pan, T. W. 1995 A three dimensional computation of the force and torque on an ellipsoid settling slowly through a viscoelastic fluid. J. Fluid Mech. 283, 116.CrossRefGoogle Scholar
Gauthier, F., Goldsmith, H. L. & Mason, S. G. 1971 Particle motions in non-Newtonian media I: Couette flow. Rheol. Acta 10, 344364.CrossRefGoogle Scholar
Gunes, D. Z., Scirocco, R., J., M. & Vermant, J. 2008 Flow-induced orientation of non-spherical particles: effect of aspect ratio and medium rheology. J. Non-Newtonian Fluid Mech. 155 (1), 3950.CrossRefGoogle Scholar
Ho, B. P. & Leal, L. G. 1976 Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech. 76, 783799.CrossRefGoogle Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Johnson, S. J., Salem, A. J. & Fuller, G. G. 1990 Dynamics of colloidal particles in sheared, non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 34 (1), 89121.CrossRefGoogle Scholar
Karnis, A. & Mason, S. G. 1966 Particle motions in sheared suspensions. XIX. Viscoelastic media. Trans. Soc. Rheol. 10, 571592.CrossRefGoogle Scholar
Kim, B. & Kim, J. M. 2016 Elasto-inertial particle focusing under the viscoelastic flow of dna solution in a square channel. Biomicrofluidics 10, 024111.CrossRefGoogle ScholarPubMed
Kim, S. 1986 The motion of ellipsoids in a second order fluid. J. Non-Newtonian Fluid Mech. 21 (2), 255269.CrossRefGoogle Scholar
Kim, S. & Karrila, S. J. 2013 Microhydrodynamics: Principles and Selected Applications, Courier Corporation.Google Scholar
Leal, L. G. 1975 The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech. 69, 305337.CrossRefGoogle Scholar
Lee, D. J., Brenner, H., Youn, J. R. & Song, Y. S. 2013 Multiplex particle focusing via hydrodynamic force in viscoelastic fluids. Sci. Rep.-UK 3, 3258.CrossRefGoogle ScholarPubMed
Leshansky, A. M., Bransky, A., Korin, N. & Dinnar, U. 2007 Tunable nonlinear viscoelastic ‘focusing’ in a microfluidic device. Phys. Rev. Lett. 98, 234501.CrossRefGoogle Scholar
Li, M., Munoz, H. E., Schmidt, A., Guo, B., Lei, C., Goda, K. & Di Carlo, D. 2016 Inertial focusing of ellipsoidal Euglena gracilis cell in a stepped microchannel. Lab on a Chip 16, 44584465.CrossRefGoogle Scholar
Lim, E. J., Ober, T. J., Edd, J. F., Desai, S. P., Neal, D., Bong, K. W., Doyle, P. S., McKinley, G. H. & Toner, M. 2014 Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Commun. 5, 4120.CrossRefGoogle ScholarPubMed
Liu, C., Guo, J., Tian, F., Yang, N., Yan, F., Ding, Y., Wei, J., Hu, G., Nie, G. & Sun, J. 2017 Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano 11, 69686976.CrossRefGoogle ScholarPubMed
Lu, X. & Xuan, X. 2015 Elasto-inertial pincherd flow fractionation for continuous shape-based particle separation. Anal. Chem. 87, 1152311530.CrossRefGoogle ScholarPubMed
Lu, X., Zhu, L., Hua, R. & Xuan, X. 2015 Continuous sheath-free separation of particles by shape in viscoelastic fluids. Appl. Phys. Lett. 107, 264102.CrossRefGoogle Scholar
Nam, J., Shin, Y., Tan, J. K. S., Lim, Y. B., Lim, C. T. & Kim, S. 2016 High-throughput malaria parasite separation using a viscoelastic fluid for ultrasensitive PCR detection. Lab on a Chip 16, 20862092.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB, CRC Press.CrossRefGoogle Scholar
Rivlin, R. S. & Ericksen, J. L. 1997 Stress-Deformation Relations for Isotropic Materials. pp. 9111013. Springer.Google Scholar
Segré, G. & Silberberg, A. 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature 189, 209210.CrossRefGoogle Scholar
Seo, K. W., Byeon, H. J., Huh, H. K. & Lee, S. J. 2014 Particle migration and single-line particle focusing in microscale pipe flow of viscoelastic fluids. RSC Adv. 4, 35123520.CrossRefGoogle Scholar
Wang, S., Martin, C. P. & Kim, S. 2019 Improper integrals as a puzzle for creeping flow around an ellipsoid. Phys. Fluids 31 (2), 021101.Google Scholar
Yang, S., Kim, J. Y., Lee, S. J., Lee, S. S. & Kim, J. M. 2011 Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab on a Chip 11, 266273.CrossRefGoogle Scholar
Yuan, D., Zhao, Q., Yan, S., Tang, S., Alici, G., Zhang, J. & Li, W. 2018 Recent progress of particle migration in viscoelastic fluids. Lab on a Chip 18, 551567.CrossRefGoogle ScholarPubMed