Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T21:57:26.108Z Has data issue: false hasContentIssue false

Converging gravity currents over a permeable substrate

Published online by Cambridge University Press:  07 August 2015

Zhong Zheng
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Sangwoo Shin
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Howard A. Stone*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

We study the propagation of viscous gravity currents along a thin permeable substrate where slow vertical drainage is allowed from the boundary. In particular, we report the effect of this vertical fluid drainage on the second-kind self-similar solutions for the shape of the fluid–fluid interface in three contexts: (i) viscous axisymmetric gravity currents converging towards the centre of a cylindrical container; (ii) viscous gravity currents moving towards the origin in a horizontal Hele-Shaw channel with a power-law varying gap thickness in the horizontal direction; and (iii) viscous gravity currents propagating towards the origin of a porous medium with horizontal permeability and porosity gradients in power-law forms. For each of these cases with vertical leakage, we identify a regime diagram that characterizes whether the front reaches the origin or not; in particular, when the front does not reach the origin, we calculate the final location of the front. We have also conducted laboratory experiments with a cylindrical lock gate to generate a converging viscous gravity current where vertical fluid drainage is allowed from various perforated horizontal substrates. The time-dependent position of the propagating front is captured from the experiments, and the front position is found to agree well with the theoretical and numerical predictions when surface tension effects can be neglected.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acton, J. M., Huppert, H. E. & Worster, M. G. 2001 Two-dimensional viscous gravity currents flowing over a deep porous medium. J. Fluid Mech. 440, 359380.Google Scholar
Atkinson, B. K. 1984 Subcritical crack growth in geological materials. J. Geophys. Res. 89, 40774114.Google Scholar
Barenblatt, G. I. 1979 Similarity, Self-Similarity, and Intermediate Asymptotics. Consultants Bureau.Google Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media. Elsevier.Google Scholar
Class, H. & Ebigbo, A. 2009 A benchmark study on problems related to $\text{CO}_{2}$ storage in geologic formations. Comput. Geosci. 13, 409434.CrossRefGoogle Scholar
Dagan, Z., Weinbaum, S. & Pfeffer, R. 1982 An infinite-series solution for the creeping motion through an orifice of finite length. J. Fluid Mech. 115, 505523.CrossRefGoogle Scholar
Davis, S. H. & Hocking, L. M. 1999 Spreading and imbibition of viscous liquid on a porous base. Phys. Fluids 11, 4857.CrossRefGoogle Scholar
Davis, S. H. & Hocking, L. M. 2000 Spreading and imbibition of viscous liquid on a porous base. II. Phys. Fluids 12, 16461655.Google Scholar
Diez, J. A., Gratton, R. & Gratton, J. 1992 Self-similar solution of the second kind for a convergent viscous gravity current. Phys. Fluids A 6, 11481155.Google Scholar
Farcas, A. & Woods, A. W. 2009 The effect of drainage on the capillary retention of $\text{CO}_{2}$ in a layered permeable rock. J. Fluid Mech. 618, 349359.Google Scholar
Gratton, J. & Minotti, F. 1990 Self-similar viscous gravity currents: phase plane formalism. J. Fluid Mech. 210, 155182.Google Scholar
Hesse, M. A., Tchelepi, H. A., Cantwell, B. J. & Orr, F. M. Jr. 2007 Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363383.Google Scholar
Hesse, M. A. & Woods, A. W. 2010 Buoyant disposal of $\text{CO}_{2}$ during geological storage. Geophys. Res. Lett. 37, L01403.Google Scholar
Huppert, H. E. 1982 Flow and instability of a viscous current down a slope. Nature 300, 427429.CrossRefGoogle Scholar
Huppert, H. E. & Neufeld, J. A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46, 255272.CrossRefGoogle Scholar
Huppert, H. E. & Woods, A. W. 1995 Gravity driven flows in porous layers. J. Fluid Mech. 292, 5569.CrossRefGoogle Scholar
Jensen, K. H., Valente, A. X. C. N. & Stone, H. A. 2014 Flow rate through microfilters: influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia. Phys. Fluids 26, 052004.Google Scholar
Lake, L. W. 1989 Enhanced Oil Recovery. Prentice-Hall.Google Scholar
Lister, J. R. 1992 Viscous flows down an inclined plane from point and line sources. J. Fluid Mech. 242, 631653.CrossRefGoogle Scholar
MacMinn, C. W., Szulczewski, M. L. & Juanes, R. 2010 $\text{CO}_{2}$ migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. J. Fluid Mech. 662, 329351.CrossRefGoogle Scholar
Murray, J. D. 1989 Mathematical Biology. Springer.Google Scholar
Neufeld, J. A. & Huppert, H. E. 2009 Modelling carbon dioxide sequestration in layered strata. J. Fluid Mech. 625, 353370.Google Scholar
Neufeld, J. A., Vella, D. & Huppert, H. E. 2009 The effect of a fissure on storage in a porous medium. J. Fluid Mech. 639, 239259.Google Scholar
Neufeld, J. A., Vella, D., Huppert, H. E. & Lister, J. R. 2011 Leakage from gravity currents in a porous medium. Part 1. A localized sink. J. Fluid Mech. 666, 391413.CrossRefGoogle Scholar
Nordbotten, J. M. & Celia, M. A. 2006 Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307327.Google Scholar
Nordbotten, J. M. & Celia, M. A. 2012 Geological Storage of CO2 . Wiley.Google Scholar
Nordbotten, J. M., Kavetski, D., Celia, M. A. & Bachu, S. 2009 Model for $\text{CO}_{2}$ leakage including multiple geological layers and multiple leaky wells. Environ. Sci. Technol. 43, 743749.Google Scholar
Pegler, S. S., Huppert, H. E. & Neufeld, J. A. 2014a Fluid injection into a confined porous layer. J. Fluid Mech. 745, 592620.Google Scholar
Pegler, S. S., Huppert, H. E. & Neufeld, J. A. 2014b Fluid migration between confined aquifers. J. Fluid Mech. 757, 330353.Google Scholar
Phillips, O. W. 1991 Flow and Reactions in Porous Rocks. Cambridge University Press.Google Scholar
Pritchard, D. 2007 Gravity currents over fractured substrates in a porous medium. J. Fluid Mech. 584, 415431.CrossRefGoogle Scholar
Pritchard, D. & Hogg, A. J. 2002 Draining viscous gravity currents in a vertical fracture. J. Fluid Mech. 459, 207216.Google Scholar
Pritchard, D., Woods, A. W. & Hogg, A. J. 2001 On the slow draining of a gravity current moving through a layered permeable medium. J. Fluid Mech. 444, 2347.Google Scholar
Sampson, R. A. 1891 On Stokes’s current function. Phil. Trans. R. Soc. Lond. A 182, 449518.Google Scholar
Seminara, A., Angelini, T. E., Wilking, J. N., Vlamakis, H., Ebrahim, S., Kolter, R., Weitz, D. A. & Brenner, M. P. 2012 Osmotic spreading of bacillus subtilis biofilms driven by an extracellular matrix. Proc. Natl Acad. Sci. USA 109, 11161121.CrossRefGoogle ScholarPubMed
Smith, S. H. 1969 On initial value problems for the flow in a thin sheet of viscous liquid. Z. Angew. Math. Phys. 20, 556560.Google Scholar
Spannuth, M. J., Neufeld, J. A., Wettlaufer, J. S. & Worster, M. G. 2009 Axisymmetric viscous gravity currents flowing over a porous medium. J. Fluid Mech. 622, 135144.CrossRefGoogle Scholar
Sprinkel, M. M. & DeMars, M. 1995 Gravity-fill polymer crack sealers. Transp. Res. Rec. 1490, 4353.Google Scholar
Vella, D., Neufeld, J. A., Huppert, H. E. & Lister, J. R. 2011 Leakage from gravity currents in a porous medium. Part 2. A line sink. J. Fluid Mech. 666, 414427.Google Scholar
Vlassak, J. J., Lin, Y. & Tsui, T. Y. 2005 Fracture of organosilicate glass thin films: environmental effects. Mater. Sci. Engng A 391, 159174.CrossRefGoogle Scholar
Weissberg, H. L. 1962 End correction for slow viscous flow through long tubes. Phys. Fluids 5, 10331036.CrossRefGoogle Scholar
Woods, A. W. & Farcas, A. 2009 Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock. J. Fluid Mech. 618, 361379.CrossRefGoogle Scholar
Zemoch, P. J., Neufeld, J. A. & Vella, D. 2011 Leakage from inclined porous reservoirs. J. Fluid Mech. 673, 395405.Google Scholar
Zheng, Z., Christov, I. C. & Stone, H. A. 2014 Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents. J. Fluid Mech. 747, 218246.Google Scholar
Zheng, Z., Guo, B., Christov, I. C., Celia, M. A. & Stone, H. A. 2015 Flow regimes for fluid injection into a confined porous medium. J. Fluid Mech. 767, 881909.Google Scholar
Zheng, Z., Soh, B., Huppert, H. E. & Stone, H. A. 2013 Fluid drainage from the edge of a porous reservoir. J. Fluid Mech. 718, 558568.Google Scholar