Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T17:23:14.713Z Has data issue: false hasContentIssue false

Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

Published online by Cambridge University Press:  16 March 2016

W. Mostert
Affiliation:
School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
D. I. Pullin
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
R. Samtaney
Affiliation:
Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
V. Wheatley
Affiliation:
School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia

Abstract

We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done within the framework of a modified version of ideal MHD for an inviscid, non-dissipative, neutrally ionized compressible gas. The time variation of the magnetic field is tuned such that it approaches zero at the instant that the shock reaches the axis. This configuration is motivated by the desire to produce a finite magnetic field at finite shock radius but a singular gas pressure and temperature at the instant of shock impact. Our main focus is on the variation with shock radius $r$, as $r\rightarrow 0$, of the shock Mach number $M(r)$ and pressure behind the shock $p(r)$ as a function of the magnetic field power-law exponent ${\it\mu}\geqslant 0$, where ${\it\mu}=0$ gives a constant-in-time line current. The flow problem is first formulated using an extension of geometrical shock dynamics (GSD) into the time domain to take account of the time-varying conditions ahead of the converging shock, coupled with appropriate shock-jump conditions for a fast, symmetric MHD shock. This provides a pair of ordinary differential equations describing both $M(r)$ and the time evolution on the shock, as a function of $r$, constrained by a collapse condition required to achieve tuned shock convergence. Asymptotic, analytical results for $M(r)$ and $p(r)$ are obtained over a range of ${\it\mu}$ for general ${\it\gamma}$, and for both small and large $r$. In addition, numerical solutions of the GSD equations are performed over a large range of $r$, for selected parameters using ${\it\gamma}=5/3$. The accuracy of the GSD model is verified for some cases using direct numerical solution of the full, radially symmetric MHD equations using a shock-capturing method. For the GSD solutions, it is found that the physical character of the shock convergence to the axis is a strong function of ${\it\mu}$. For $0\leqslant {\it\mu}<4/13$, $M$ and $p$ both approach unity at shock impact $r=0$ owing to the dominance of the strong magnetic field over the amplifying effects of geometrical convergence. When ${\it\mu}\geqslant 0.816$ (for ${\it\gamma}=5/3$), geometrical convergence is dominant and the shock behaves similarly to a converging gas dynamic shock with singular $M(r)$ and $p(r)$, $r\rightarrow 0$. For $4/13<{\it\mu}\leqslant 0.816$ three distinct regions of $M(r)$ variation are identified. For each of these $p(r)$ is singular at the axis.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awe, T. J., McBride, R. D., Jennings, C. A., Lamppa, D. C., Martin, M. R., Rovang, D. C., Slutz, S. A., Cuneo, M. E., Owen, A. C., Sinars, D. B. et al. 2013 Observations of modified three-dimensional instability structure for imploding $Z$ -pinch liners that are premagnetized with an axial field. Phys. Rev. Lett. 111, 235005.CrossRefGoogle ScholarPubMed
Catherasoo, C. J. & Sturtevant, B. 1983 Shock dynamics in non-uniform media. J. Fluid Mech. 127, 539561.Google Scholar
Chang, P. Y., Fiksel, G., Hohenberger, M., Knauer, J. P., Betti, R., Marshall, F. J., Meyerhofer, D. D., Séguin, F. H. & Petrasso, R. D. 2011 Fusion yield enhancement in magnetized laser-driven implosions. Phys. Rev. Lett. 107, 035006.Google Scholar
Guderley, G. 1942 Starke kugelige und zylindrische, verdichtungsstosse in der nahe des kugelmittelpunktes bzw der zylinderachse. Luftfahrtforschung 19, 302312.Google Scholar
Hohenberger, H., Chang, P. Y., Fiskel, G., Knauer, J. P., Betti, R., Marshall, F. J., Meyerhofer, D. D., Séguin, F. H. & Petrasso, R. D. 2012 Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser. Phys. Plasmas 19, 056306.Google Scholar
Liberman, M. A. & Velikovich, A. L. 1982 Physics of ionizing shock waves in magnetic fields. Phys. Rep. 84 (1), 184.CrossRefGoogle Scholar
Liberman, M. A. & Velikovich, A. L. 1986 Self-similar motions in $Z$ -pinch dynamics. Nucl. Fusion 26 (6), 709728.Google Scholar
Lindl, J., Landen, O., Edwards, J., Moses, E. D. & Team, N. I. C. 2014 Review of the national ignition campaign 2009–2012. Phys. Plasmas 21 (2), 020501.Google Scholar
Lindl, J. D., McCrory, R. L. & Campbell, E. M. 1992 Progress toward ignition and burn propagation in inertial confinement fusion. Phys. Today 45 (9), 3240.Google Scholar
Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4 (5), 101104.Google Scholar
Olsen, H. N. 1959 Thermal and electrical properties of an argon plasma. Phys. Fluids 2 (6), 614623.Google Scholar
Perkins, L. J., Logan, B. G., Zimmerman, G. B. & Werner, C. J. 2013 Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields. Phys. Plasmas 20 (7), 072708.Google Scholar
Pullin, D. I., Mostert, W., Wheatley, V. & Samtaney, R. 2014 Converging cylindrical shocks in ideal magnetohydrodynamics. Phys. Fluids 26 (9), 097103.Google Scholar
Richtmyer, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13 (2), 297319.Google Scholar
Samtaney, R. 2003 Suppression of the Richtmyer–Meshkov instability in the presence of a magnetic field. Phys. Fluids 15 (8), L53L56.Google Scholar
Samtaney, R., Colella, P., Ligocki, T. J., Martin, D. F. & Jardin, S. C. 2005 An adaptive mesh semi-implicit conservative unsplit method for resistive MHD. J. Phys. Conf. Ser. 16, 4048.Google Scholar
Sefkow, A. B., Slutz, S. A., Koning, J. M., Marinak, M. M., Peterson, K. J., Sinars, D. B. & Vesey, R. A. 2014 Design of magnetized liner inertial fusion experiments using the $Z$ facility. Phys. Plasmas 21 (7), 072711.CrossRefGoogle Scholar
Wheatley, V., Pullin, D. I. & Samtaney, R. 2005 Regular shock refraction at an oblique planar density interface in magnetohydrodynamics. J. Fluid Mech. 522, 179214.Google Scholar
Wheatley, V., Samtaney, R. & Pullin, D. I. 2009 The Richtmyer–Meshkov instability in magnetohydrodynamics. Phys. Fluids 21 (8), 082102.Google Scholar
Wheatley, V., Samtaney, R., Pullin, D. I. & Gehre, R. M. 2014 The transverse field Richtmyer–Meshkov instability in magnetohydrodynamics. Phys. Fluids 26 (1), 016102.Google Scholar
Whitham, G. B. 1958 On the propagation of shock waves through regions of non-uniform area or flow. J. Fluid Mech. 4 (04), 337360.Google Scholar
Whitham, G. B. 2011 Linear and Nonlinear Waves. John Wiley & Sons.Google Scholar