Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Carrière, Philippe
and
Monkewitz, Peter A
2001.
Transverse-roll global modes in a Rayleigh–Bénard–Poiseuille system with streamwise variable heating.
European Journal of Mechanics - B/Fluids,
Vol. 20,
Issue. 6,
p.
751.
Chang, M. H.
and
Chen, C. K.
2002.
The stability of the narrow-gap Taylor-Couette system with an axial flow.
Acta Mechanica,
Vol. 156,
Issue. 3-4,
p.
131.
Nicolas, Xavier
2002.
Revue bibliographique sur les écoulements de Poiseuille–Rayleigh–Bénard : écoulements de convection mixte en conduites rectangulaires horizontales chauffées par le bas.
International Journal of Thermal Sciences,
Vol. 41,
Issue. 10,
p.
961.
Ouarzazi, Mohamed Najib
Joulin, Annabelle
Bois, Pierre-Antoine
and
Platten, Jean K.
2002.
Thermal Nonequilibrium Phenomena in Fluid Mixtures.
Vol. 584,
Issue. ,
p.
428.
Suslov, Sergey A
and
Paolucci, Samuel
2004.
Stability of non-Boussinesq convection via the complex Ginzburg–Landau model.
Fluid Dynamics Research,
Vol. 35,
Issue. 3,
p.
159.
Benzaoui, Abderrahmane
Nicolas, Xavier
and
Xin, Shihe
2005.
Efficient Vectorized Finite-Difference Method to Solve the Incompressible Navier–Stokes Equations for 3-D Mixed-Convection Flows in High-Aspect-Ratio Channels.
Numerical Heat Transfer, Part B: Fundamentals,
Vol. 48,
Issue. 3,
p.
277.
Xin, Shihe
Nicolas, Xavier
and
Quéré, Patrick Le
2006.
Stability analyses of Longitudinal Rolls of Poiseuille-Rayleigh-Bénard Flows in Air-Filled Channels of Finite Transversal Extension.
Numerical Heat Transfer, Part A: Applications,
Vol. 50,
Issue. 5,
p.
467.
Chang, Min-Hsing
2006.
Thermal convection in superposed fluid and porous layers subjected to a plane Poiseuille flow.
Physics of Fluids,
Vol. 18,
Issue. 3,
Suslov, Sergey A.
2006.
Numerical aspects of searching convective/absolute instability transition.
Journal of Computational Physics,
Vol. 212,
Issue. 1,
p.
188.
SAMEEN, A.
and
GOVINDARAJAN, RAMA
2007.
The effect of wall heating on instability of channel flow.
Journal of Fluid Mechanics,
Vol. 577,
Issue. ,
p.
417.
Delache, A.
Ouarzazi, M.N.
and
Combarnous, M.
2007.
Spatio-temporal stability analysis of mixed convection flows in porous media heated from below: Comparison with experiments.
International Journal of Heat and Mass Transfer,
Vol. 50,
Issue. 7-8,
p.
1485.
Suslov, Sergey A.
2007.
Convective and absolute instabilities in non-Boussinesq mixed convection.
Theoretical and Computational Fluid Dynamics,
Vol. 21,
Issue. 4,
p.
271.
Benderradji, A.
Haddad, A.
Taher, R.
Médale, M.
Abid, C.
and
Papini, F.
2008.
Characterization of fluid flow patterns and heat transfer in horizontal channel mixed convection.
Heat and Mass Transfer,
Vol. 44,
Issue. 12,
p.
1465.
Bograchev, D.A.
Davydov, A.D.
and
Volgin, V.M.
2008.
Linear stability of Rayleigh–Benard–Poiseuille convection for electrochemical system.
International Journal of Heat and Mass Transfer,
Vol. 51,
Issue. 19-20,
p.
4886.
Métivier, Christel
and
Nouar, Chérif
2008.
On linear stability of Rayleigh–Bénard Poiseuille flow of viscoplastic fluids.
Physics of Fluids,
Vol. 20,
Issue. 10,
OUARZAZI, M. N.
MEJNI, F.
DELACHE, A.
and
LABROSSE, G.
2008.
Nonlinear global modes in inhomogeneous mixed convection flows in porous media.
Journal of Fluid Mechanics,
Vol. 595,
Issue. ,
p.
367.
GRANDJEAN, EMERIC
and
MONKEWITZ, PETER A.
2009.
Experimental investigation into localized instabilities of mixed Rayleigh–Bénard–Poiseuille convection.
Journal of Fluid Mechanics,
Vol. 640,
Issue. ,
p.
401.
Métivier, Christel
and
Nouar, Chérif
2009.
Linear stability of the Rayleigh–Bénard Poiseuille flow for thermodependent viscoplastic fluids.
Journal of Non-Newtonian Fluid Mechanics,
Vol. 163,
Issue. 1-3,
p.
1.
Suslov, Sergey A.
2009.
Analysis of instability patterns in non-Boussinesq mixed convection using a direct numerical evaluation of disturbance integrals.
Computers & Fluids,
Vol. 38,
Issue. 3,
p.
590.
CHANG, MIN-HSING
RUO, AN-CHENG
and
CHEN, FALIN
2009.
Electrohydrodynamic instability in a horizontal fluid layer with electrical conductivity gradient subject to a weak shear flow.
Journal of Fluid Mechanics,
Vol. 634,
Issue. ,
p.
191.