Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T21:51:10.003Z Has data issue: false hasContentIssue false

Convection in a vertical slot

Published online by Cambridge University Press:  21 April 2006

P. G. Daniels
Affiliation:
Department of Mathematics, The City University, Northampton Square, London EC1V 0HB, UK

Abstract

A boundary-layer approximation is used to describe the convective regime in a laterally heated vertical slot at large Prandtl numbers. The determination of the core flow requires the solution of the vertical boundary-layer equations in a rectangle, subject to appropriate boundary conditions on each of the four walls. Solutions based on a spectral decomposition in the vertical direction allow a comparison with experimental and numerical results, and an appraisal of an approximate solution frequently used as a basis for stability studies. Both the numerical results and an approximate stability argument lead to a simple criterion for the appearance of multiple rolls in the slot which appears to be in good agreement with experiments.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1954 Q. Appl. Maths 12, 209.
Bergholz, R. F. 1978 J. Fluid Mech. 84, 743.
Birikh, R. V., Gershuni, G. Z., Zhukovitskii, E. M. & Rudakov, R. N. 1969 Prikl. Math. Mekh. 33, 958.
Blythe, P. A., Daniels, P. G. & Simpkins, P. G. 1983 Proc. R. Soc. Lond. A 387, 367.
Blythe, P. A. & Simpkins, P. G. 1977 Physico-Chemical Hydrodynamics (ed. D. B. Spalding), vol. 2, p. 511. Adv. Pub. Inc.
Bontoux, P. & Roux, B. 1982 In Lecture Series 9, ‘Natural Convection: Theory and Experiment’. Von Karman Institute.
Catton, I., Ayyoswamy, P. S. & Clever, R. M. 1974 Intl J. Heat Mass Transfer 17, 173.
Daniels, P. G. 1985a Intl J. Heat Mass Transfer 28, 2071.
Daniels, P. G. 1985b Proc. R. Soc. Lond. A 401, 145.
Daniels, P. G. 1986 Q. J. Mech. Appl. Maths (to appear).
Daniels, P. G. & Simpkins, P. G. 1982 A numerical solution of the vertical boundary layer equations in a horizontally heated cavity using a spectral method. Bell Labs. Tech. Memo. (unpublished).
De Vahl Davis, G. & Mallinson, G. D. 1975 J. Fluid Mech. 72, 87.
Eckert, E. R. G. & Carlson, W. O. 1961 Intl J. Heat Mass Transfer 2, 106.
Elder, J. W. 1965 J. Fluid Mech. 23, 77.
Elder, J. W. 1966 J. Fluid Mech. 24, 823.
Gershuni, G. Z. 1953 Zh. Tekh. Fiz. 23, 1838.
Gill, A. E. 1966 J. Fluid Mech. 26, 515.
Gill, A. E. & Davey, A. 1969 J. Fluid Mech. 35, 775.
Gill, A. E. & Kirkham, C. C. 1970 J. Fluid Mech. 42, 125.
Goldstein, S. 1938 Modern Developments in Fluid Dynamics, vol. 2. Oxford University Press.
Hart, J. E. 1971 J. Fluid Mech. 47, 547.
Korpela, S. A., Gozum, D. & Baxi, C. B. 1973 Intl J. Heat Mass Transfer 16, 1683.
Kuiken, H. K. 1968 J. Engng Maths 2, 355.
Lee, Y. & Korpela, S. A. 1983 J. Fluid Mech. 126, 91.
Mizushima, J. & Gotoh, K. 1976 J. Fluid Mech. 73, 65.
Mordchelles-Regnier, C. & Kaplan, C. 1963 Proc. Heat Transfer Fluid Mech. Inst., p. 94.
Nusselt, W. 1909 V.D.I. Forsch. Arb. 63, 78.
Rubel, A. & Landis, F. 1969 Phys. Fluids Suppl. II, 12, II–208.
Rudakov, R. N. 1967 Prikl. Math. Mekh. 31, 376.
Seki, N., Fukusako, S. & Inaba, H. J. 1978 J. Fluid Mech. 84, 695.
Simpkins, P. G. & Dudderar, T. D. 1981 J. Fluid Mech. 110, 433.
Tolstov, G. P. 1962 Fourier Series. Prentice Hall.
Vest, C. M. & Arpaci, V. S. 1969 J. Fluid Mech. 36, 1.