Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T21:59:46.929Z Has data issue: false hasContentIssue false

Controlling chaos in a thermal convection loop

Published online by Cambridge University Press:  26 April 2006

Yuzhou Wang
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315, USA
Jonathan Singer
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315, USA
Haim H. Bau
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315, USA

Abstract

It is demonstrated experimentally and theoretically that through the use of an active (feedback) controller one can dramatically modify the nature of the flow in a toroidal thermal convection loop heated from below and cooled from above. In particular, we show how a simple control strategy can be used to suppress (laminarize) the naturally occurring chaotic motion or induce chaos in otherwise time-independent flow. The control strategy consists of sensing the deviation of fluid temperatures from desired values at a number of locations inside the loop and then altering the wall heating to either counteract or enhance such deviations.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bau, H. H. & Torrance, K. E. 1981 Transient and steady behaviour of an open symmetrically-heated, free convection loop. Intl J. Heat Mass Transfer 24, 597609.Google Scholar
Bau, H. H. & Wang, Y.-Z. 1991 Chaos: a heat transfer Perspective. In Annual Reviews in Heat Transfer, Vol. IV (ed. C. L. Tien), pp. 150. Hemisphere.
Creveling, H. F., De Paz, J. F., Baladi, J. Y. & Schoenhals, R. J. 1975 Stability characteristics of a single phase thermal convection loop. J. Fluid Mech. 67, 6584.Google Scholar
Ditto, W. L., Rauseo, S. N. & Spano, M. L. 1990 Experimental control of chaos. Phys. Rev. Lett. 65, 32113214.Google Scholar
Ehrhard, P. & Muller, U. 1990 Dynamical behaviour of natural convection in a single-phase loop. J. Fluid Mech. 217, 487518.Google Scholar
Gorman, M., Widmann, P. J. & Robins, K. A. 1984 Chaotic flow regimes in a convection loop. Phys. Rev. Lett. 52, 22412244.Google Scholar
Gorman, M., Widmann, P. J. & Robins, K. A. 1986 Nonlinear dynamics of a convection loop: a quantitative comparison of experiment with theory. Physiea 19D, 255267.CrossRefGoogle Scholar
Hart, J. E. 1984 A new analysis of the closed loop thermosyphon. Intl J. Heat Mass Transfer 27, 125136.Google Scholar
Hart, J. E. 1985 A note on the loop thermosyphon with mixed boundary conditions, Intl J. Heat Mass Transfer 28, 939947.Google Scholar
Iooss, G. & Joseph, D. D. 1989 Elementary Stability and Bifurcation Theory, 2nd edn. Springer.
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 131141.Google Scholar
Malkus, W. V. R. 1972 Non-periodic convection at high and low Prandtl number. Mem. Soc. R. Sci. Liege IV (6), 125–128.Google Scholar
Metrol, A. & Greif, R. 1985 A review of natural circulation loops. In Natural Convection: Fundamentals and Applications (ed. W. Aung, S. Kakac & R. Viskanta), pp. 10331081. Hemisphere.
Ott, E., Grebogi, C. & Yorke, J. A. 1990a Controlling chaos. Phys. Rev. Lett. 64, 641196.Google Scholar
Ott, E., Grebogi, C. & Yorke, J. A. 1990b Controlling chaotic dynamical systems. In Chaos: Soviet-American Perspectives on Non-linear Science (ed. D. K. Campbell), pp. 153172. Am. Inst. Phys.
Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos and Transport. Cambridge University Press.
Singer, J. 1991 Controlling a chaotic system. MS thesis, University of Pennsylvania.
Singer, J. & Bau, H. H. 1991 Active control of convection. Phys. Fluids A (to appear).Google Scholar
Singer, J., Wang, Y.-Z. & Bau, H. H. 1991 Controlling a chaotic system. Phys. Rev. Lett. 66, 11231126.Google Scholar
Sparrow, C. 1982 The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer.
Wang, Y.-Z. 1991 Problems in thermal convection. Ph.D. thesis, University of Pennsylvania.
Wang, Y.-Z. & Bau, H. H. 1990 Period doubling and chaos in a thermal convection loop with time periodic wall temperature variation. Intl Heat Transfer Conf. 90, Vol. II, pp. 357362.
Wang, Y.-Z. & Bau, H. H. 1991 Thermal convection loop with heating from above. Int J. Heat Mass Transfer (to appear).Google Scholar
Welander, P. 1967 On oscillatory instability of differentially heated fluid loop. J. Fluid Mech. 29, 1730.Google Scholar
Widmann, P. J., Gorman, M. & Robins, K. A. 1989 Nonlinear dynamics of a convection loop II: chaos in laminar and turbulent flows. Physica D 36, 157166.CrossRefGoogle Scholar
Yorke, A., Yorke, E. D. & Mallet-Paret, J. 1987 Lorenz-like chaos in partial differential equation. Physica 24D, 279291.Google Scholar