Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T12:09:51.777Z Has data issue: false hasContentIssue false

A continuum approach to reproduce molecular-scale slip behaviour

Published online by Cambridge University Press:  02 February 2010

H.-Y. HSU
Affiliation:
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3111, USA
N. A. PATANKAR*
Affiliation:
Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3111, USA
*
Email address for correspondence: [email protected]

Abstract

In this work we explore if it is possible to reproduce molecular-scale slip behaviour by using continuum equations. To that end it is noted that molecular-scale slip is affected by three factors: (i) near the wall, the fluid experiences a potential because of the wall; (ii) the fluid density responds to that potential, and hence, fluid compressibility is relevant; and (iii) the fluid can lose momentum to the wall. To incorporate these features we simulate shear flow of a compressible fluid between two walls in the presence of a potential. Compressibility effect is found to be important only in the near-wall region. The slip length is calculated from the mean velocity profile. The slip-length-versus-shear-rate trend is similar to that in molecular dynamic calculations. First, there is a constant value of the slip length at low shear rates. Then, the slip length increases beyond a critical shear rate. Lastly, the slip length reaches another constant value if the wall momentum loss parameter is non-zero. The scaling for the critical shear rate emerges from our results. The value of the slip length increases if the wall potential is less corrugated and if the momentum loss to the wall is low. An understanding of the overall force balance during various slip modes emerges from the governing equations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhushan, B. (Ed.) 2000 Handbook of Modern Tribology. CRC Press.CrossRefGoogle Scholar
Bazant, M. Z. & Vinogradova, O. I. 2008 Tensorial hydrodynamic slip. J. Fluid Mech. 613, 125134.CrossRefGoogle Scholar
Bocquet, L. & Barrat, J. L. 2007 Flow boundary conditions from nano- to micro-scales. Soft Matt. 3, 685693.CrossRefGoogle ScholarPubMed
Choi, C. H., Westin, K. J. A. & Breuer, K. S. 2003 Apparent slip flow in hydrophilic and hydrophobic microchannels. Phys. Fluids 15, 28972902.CrossRefGoogle Scholar
Din, X. D. & Michaelides, E. E. 1997 Kinetic theory and molecular dynamics simulations of microscopic flows. Phys. Fluids 9, 39153925.CrossRefGoogle Scholar
Einzel, D., Panzer, P. & Liu, M. 1990 Boundary condition for fluid flow: curved or rough surfaces. Phys. Rev. Lett. 64, 22692272.CrossRefGoogle ScholarPubMed
Gao, J., Luedtke, W. D. & Landman, U. 2000 Structures, solvation forces and shear of molecular films in a rough nano-confinement. Tribol. Lett. 9, 313.CrossRefGoogle Scholar
Guo, Z., Zhao, T. S. & Shi, Y. 2005 a Simple kinetic model for fluid flows in the nanometre scale. Phys. Rev. E 71, 035301(R).CrossRefGoogle Scholar
Guo, Z., Zhao, T. S. & Shi, Y. 2005 b Temperature dependence of the velocity boundary condition for nanoscale fluid flows. Phys. Rev. E 72, 036301.CrossRefGoogle ScholarPubMed
Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Arthyukhin, A. B., Grigoropoulos, C. P., Noy, A. & Bakajin, O. 2006 Fast mass transport through sub-2-nanometre carbon nanotubes. Science 312, 10341037.CrossRefGoogle ScholarPubMed
Honig, C. D. F. & Ducker, W. A. 2007 No-slip hydrodynamic boundary condition for hydrophilic particles. Phys. Rev. Lett. 98, 028305.CrossRefGoogle ScholarPubMed
Lichter, S., Martini, A., Snurr, R. Q. & Wang, Q. 2007 Liquid slip as a rate process. Phys. Rev. Lett. 98, 226001.CrossRefGoogle ScholarPubMed
Lichter, S., Roxin, A. & Mandre, S. 2004 Mechanisms for liquid slip at solid surfaces. Phys. Rev. Lett. 93, 086001.CrossRefGoogle ScholarPubMed
Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. 2005 Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 4444.CrossRefGoogle ScholarPubMed
Martini, A., Hsu, H. Y., Patankar, N. A. & Lichter, S. 2008 a Slip at high shear rate. Phys. Rev. Lett. 100, 206001.CrossRefGoogle Scholar
Martini, A., Liu, Y., Snurr, R. Q. & Wang, Q. 2006 Molecular dynamics charaterization of thin film viscosity for EHL simulation. Tribol. Lett. 21, 217225.CrossRefGoogle Scholar
Martini, A., Roxin, A., Snurr, R. Q., Wang, Q. & Lichter, S. 2008 b Molecular mechanisms of liquid slip. J. Fluid Mech. 600, 257269.CrossRefGoogle Scholar
Miksis, M. J. & Davis, S. H. 1994 Slip over rough and coated surfaces. J. Fluid Mech. 273, 125139.CrossRefGoogle Scholar
Pit, R., Hervet, H. & Leger, L. 2000 Direct experimental evidence of slip in hexadecane: solid interfaces. Phys. Rev. Lett. 85, 980983.CrossRefGoogle ScholarPubMed
Pozhar, L. A. & Gubbins, K. E. 1991 Dense inhomogeneous fluids: functional perturbation theory, the generalized langevin equation, and kinetic theory. J. Chem. Phys. 94, 13671384.CrossRefGoogle Scholar
Pozhar, L. A. & Gubbins, K. E. 1993 Transport theory of dense, strongly inhomogeneous fluids. J. Chem. Phys. 99, 89708996.CrossRefGoogle Scholar
Priezjev, N. V. 2007 a Effect of surface roughness on rate-dependent slip in simple fluids. J. Chem. Phys. 127, 144708.CrossRefGoogle ScholarPubMed
Priezjev, N. V. 2007 b Rate-dependent slip boundary conditions for simple fluids. Phys. Rev. E 75, 051605.CrossRefGoogle ScholarPubMed
Priezjev, N. V., Darhuber, A. A. & Troian, S. M. 2005 Slip behaviour in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. Phys. Rev. E 71, 041608.CrossRefGoogle ScholarPubMed
Priezjev, N. V. & Troian, S. M. 2004 Molecular origin and dynamics behaviour of slip in sheared polymer films. Phys. Rev. Lett. 92, 018302.CrossRefGoogle ScholarPubMed
Priezjev, N. V. & Troian, S. M. 2006 Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular-scale simulations versus continuum predictions. J. Fluid Mech. 554, 2546.CrossRefGoogle Scholar
Raghunathan, A. V., Park, J. H. & Aluru, N. R. 2007 Interatomic potential-based semiclassical theory for Lennard–Jones fluids. J. Chem. Phys. 127, 174701.CrossRefGoogle ScholarPubMed
Sholl, D. S. & Johnson, J. K. 2006 Making high-flux membranes with carbon nanotubes. Science 312, 10031004.CrossRefGoogle ScholarPubMed
Steele, W. A. 1973 The physical interaction of gases with crystalline solids. I. gas-solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36, 317352.CrossRefGoogle Scholar
Thompson, P. A. & Troian, S. M. 1997 A general boundary condition for liquid flow at solid surfaces. Nature 389, 360362.CrossRefGoogle Scholar
Tretheway, D. C. & Meinhart, C. D. 2002 Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14, L9L12.CrossRefGoogle Scholar
Urbakh, M., Klafter, J., Gourdon, D. & Israelachvili, J. 2004 The nonlinear nature of friction. Nature 430, 525528.CrossRefGoogle ScholarPubMed
Vanderlick, T. K., Scriven, L. E. & Davis, H. T. 1989 Molecular theories of confined fluids. J. Chem. Phys. 90, 24222436.CrossRefGoogle Scholar
Wang, C. Y. 2003 Flow over a surface with parallel grooves. Phys. Fluids 15, 11141121.CrossRefGoogle Scholar
Zhu, Y. & Granick, S. 2001 Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87, 096105.CrossRefGoogle ScholarPubMed