Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T06:46:45.679Z Has data issue: false hasContentIssue false

Contact line motion in axial thermocapillary outward flow

Published online by Cambridge University Press:  01 April 2020

A. Dominguez Torres
Affiliation:
SEPI ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas 682, Col. Santa Catarina, 02250, Azcapotzalco DF, México
J. R. Mac Intyre
Affiliation:
Instituto de Física Arroyo Seco IFAS (UNCPBA) and CIFICEN (UNCPBA-CICPBA-CONICET), Pinto 399, 7000, Tandil, Argentina
J. M. Gomba*
Affiliation:
Instituto de Física Arroyo Seco IFAS (UNCPBA) and CIFICEN (UNCPBA-CICPBA-CONICET), Pinto 399, 7000, Tandil, Argentina
C. A. Perazzo
Affiliation:
IMeTTyB, Universidad Favaloro-CONICET, Solís 453, C1078AAIBuenos Aires, Argentina Departamento de Física y Química, FICEN, Universidad Favaloro, Sarmiento 1853, C1198AAGBuenos Aires, Argentina
P. G. Correa
Affiliation:
Instituto de Física Arroyo Seco IFAS (UNCPBA) and CIFICEN (UNCPBA-CICPBA-CONICET), Pinto 399, 7000, Tandil, Argentina
A. Lopez-Villa
Affiliation:
SEPI ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas 682, Col. Santa Catarina, 02250, Azcapotzalco DF, México
A. Medina
Affiliation:
ETSI Aeronáutica y del Espacio UPM, Plaza Cardenal Cisneros 3, 28040Madrid, Spain
*
Email address for correspondence: [email protected]

Abstract

We study the contact line dynamics of a viscous droplet deposited at the centre of a substrate subject to an axial thermal gradient. The temperature of the substrate decreases with distance from the centre, so the Marangoni stress induced at the liquid–air interface displaces the liquid radially outward. The flow experiences two stages. In the first stage, the droplet evolves towards an axially symmetric ring whose radius increases with time as $t^{1/3}$. Using the lubrication approximation, we perform numerical simulations that confirm this law for the motion of the front and show that the maximum thickness of the profile decreases as $t^{-0.374}$. We explain the evolution law of the contact line by balancing Marangoni and viscous stresses. In the second stage, the contact line becomes unstable and develops smooth corrugations whose amplitude increases with time and that eventually become long fingers. The temporal evolution of the Fourier spectra of the contour shows a shift of the most unstable mode from smaller to larger azimuthal wavenumbers.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brzoska, J., Brochard-Wyart, F. & Rondel, F. 1992 Exponential growth of fingering instabilities of spreading films under horizontal thermal gradients. Europhys. Lett. 19 (2), 97102.CrossRefGoogle Scholar
Brzoska, J. B., Brochard-Wyart, F. & Rondelez, F. 1993 Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir 9 (8), 22202224.CrossRefGoogle Scholar
Cachile, M., Schneemilch, M., Hamraoui, A. & Cazabat, A. M. 2002 Films driven by surface tension gradients. Adv. Colloid Interface Sci. 96 (1), 5974.CrossRefGoogle ScholarPubMed
Campana, D. M., Ubal, S., Giavedoni, M. D., Saita, F. A. & Carvalho, M. S. 2016 Three dimensional flow of liquid transfer between a cavity and a moving roll. Chem. Engng Sci. 149, 169180.CrossRefGoogle Scholar
Casadevall i Solvas, X. & DeMello, A. J. 2011 Droplet microfluidics: recent developments and future applications. Chem. Commun. 47 (7), 19361942.CrossRefGoogle ScholarPubMed
Cazabat, A., Heslot, F., Troian, S. M. & Carles, P. 1990 Fingering instability of thin spreading films driven by temperature gradients. Nature 346, 824826.CrossRefGoogle Scholar
Cazabat, A. M. & Stuart, M. A. C. 1986 Dynamics of wetting: effects of surface roughness. J. Phys. Chem. 90 (22), 58455849.CrossRefGoogle Scholar
Chen, J. Z., Troian, S. M., Darhuber, A. A. & Wagner, S. 2005 Effect of contact angle hysteresis on thermocapillary droplet actuation. J. Appl. Phys. 97 (1), 014906.Google Scholar
Choi, K., Ng, A. H. C., Fobel, R. & Wheeler, A. R. 2012 Digital Microfluidics. Annu. Rev. Anal. Chem. 5 (1), 413440.CrossRefGoogle ScholarPubMed
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 11311198.CrossRefGoogle Scholar
Darhuber, A., Davis, J., Troian, S. & Reisner, W. 2003 Thermocapillary actuation of liquid flow on chemically patterned surfaces. Phys. Fluids 15 (5), 12951304.CrossRefGoogle Scholar
Diez, J. A. & Kondic, L. 2001 Contact line instabilities of thin liquid films. Phys. Rev. Lett. 86, 632635.CrossRefGoogle ScholarPubMed
Dominguez Torres, A., Garrido Gonzalez, J. M., Villa, A. L. & Gomba, J. M.2016 Dynamics of the contact line of a droplet driven by a temperature gradient. XXII Div. Fluid Dynamics, UNAM, Uxmal, Mexico, http://champagn.fciencias.unam.mx/ddf2016/programa2016.pdf. DDF-SFM.Google Scholar
Ehrhard, P. & Davis, S. H. 1991 Non-isothermal spreading of liquid drops on horizontal plates. J. Fluid Mech. 229 (1979), 365388.CrossRefGoogle Scholar
Fraysse, N. & Homsy, G. 1994 An experimental study of rivulet instabilities in centrifugal spin coating of viscous Newtonian and non-Newtonian fluids. Phys. Fluids 6 (4), 14911504.CrossRefGoogle Scholar
Gomba, J. M., Diez, J., González, A. G. & Gratton, R. 2005 Spreading of a micrometric fluid strip down a plane under controlled initial conditions. Phys. Rev. E 71, 016304.Google Scholar
Gomba, J. M., Diez, J., Gratton, R., González, A. G. & Kondic, L. 2007 Stability study of a constant-volume thin film flow. Phys. Rev. E 76, 046308.Google ScholarPubMed
Gomba, J. M. & Homsy, G. M. 2010 Regimes of thermocapillary migration of droplets under partial wetting conditions. J. Fluid Mech. 647, 125142.CrossRefGoogle Scholar
Gotkis, Y., Ivanov, I., Murisic, N. & Kondic, L. 2006 Dynamic structure formation at the fronts of volatile liquid drops. Phys. Rev. Lett. 97, 186101.CrossRefGoogle ScholarPubMed
Hoang, A. & Kavehpour, H. P. 2011 Dynamics of nanoscale precursor film near a moving contact line of spreading drops. Phys. Rev. Lett. 106, 254501.CrossRefGoogle Scholar
Huebner, A., Sharma, S., Srisa-Art, M., Hollfelder, F., Edel, J. B. & DeMello, A. J. 2008 Microdroplets: a sea of applications? Lab on a Chip 8 (8), 12441254.CrossRefGoogle ScholarPubMed
Huppert, H. E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.CrossRefGoogle Scholar
Karapetsas, G., Sahu, K. C., Sefiane, K. & Matar, O. K. 2014 Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature. Langmuir 30, 43104321.CrossRefGoogle ScholarPubMed
Karbalaei, A., Kumar, R. & Cho, H. J. 2016 Thermocapillarity in microfluidics – a review. Micromachines 7 (1), 141.CrossRefGoogle ScholarPubMed
Keiser, L., Bense, H., Colinet, P., Bico, J. & Reyssat, E. 2017 Marangoni bursting: evaporation-induced emulsification of binary mixtures on a liquid layer. Phys. Rev. Lett. 118, 074504.CrossRefGoogle ScholarPubMed
Lopez, J., Miller, C. A. & Ruckenstein, E. 1976 Spreading kinetics of liquid drops on solids. J. Colloid Interface Sci. 56 (3), 460468.CrossRefGoogle Scholar
Mac Intyre, J. R.2017 Effects of molecular forces on droplets and thermocapillary flows. PhD thesis, UNCPBA. Available at: https://www.ridaa.unicen.edu.ar/xmlui/handle/123456789/1400.Google Scholar
Mac Intyre, J. R., Gomba, J. M., Perazzo, C. A., Correa, P. G. & Sellier, M. 2018 Thermocapillary migration of droplets under molecular and gravitational forces. J. Fluid Mech. 847, 127.CrossRefGoogle Scholar
Melo, F., Joanny, J. F. & Fauve, S. 1989 Fingering instability of spinning drops. Phys. Rev. Lett. 63, 19581961.CrossRefGoogle ScholarPubMed
Nguyen, H. B. & Chen, J. C. 2010 A numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface. Phys. Fluids 22 (6), 062102.CrossRefGoogle Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.CrossRefGoogle Scholar
Pairam, E. & Fernández-Nieves, A. 2009 Generation and stability of toroidal droplets in a viscous liquid. Phys. Rev. Lett. 102, 234501.CrossRefGoogle Scholar
Popescu, M. N., Oshanin, G., Dietrich, S. & Cazabat, A.-M. 2012 Precursor films in wetting phenomena. J. Phys.: Condens. Matter 24 (24), 243102.Google ScholarPubMed
Pratap, V., Moumen, N. & Subramanian, R. S. 2008 Thermocapillary motion of a liquid drop on a horizontal solid surface. Langmuir 24 (9), 51855193.CrossRefGoogle ScholarPubMed
Smith, M. K. 1995 Thermocapillary migration of a two-dimensional liquid droplet on a solid surface. J. Fluid Mech. 294, 209230.CrossRefGoogle Scholar
Spaid, M. A. & Homsy, G. M. 1996 Stability of Newtonian and viscoelastic dynamic contact lines. Phys. Fluids 8 (2), 460478.CrossRefGoogle Scholar
Staicu, A. & Mugele, F. 2006 Electrowetting-induced oil film entrapment and instability. Phys. Rev. Lett. 97, 167801.CrossRefGoogle ScholarPubMed
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36 (1), 381411.CrossRefGoogle Scholar
Sur, J., Witelski, T. P. & Behringer, R. P. 2004 Steady-profile fingering flows in Marangoni driven thin films. Phys. Rev. Lett. 93, 247803.CrossRefGoogle ScholarPubMed
Troian, S. M., Joanny, J. & Safran, S. 1989 Fingering instabilities of driven spreading films. Europhys. Lett. 10 (1), 2530.CrossRefGoogle Scholar