Hostname: page-component-5f745c7db-2kk5n Total loading time: 0 Render date: 2025-01-06T09:07:32.227Z Has data issue: true hasContentIssue false

Consistent subgrid scale modelling for lattice Boltzmann methods

Published online by Cambridge University Press:  30 April 2012

Orestis Malaspinas*
Affiliation:
Institut Jean le Rond d’Alembert, UMR 7190, Université Pierre et Marie Curie - Paris 6, 4 place Jussieu - case 162, F-75252, France
Pierre Sagaut
Affiliation:
Institut Jean le Rond d’Alembert, UMR 7190, Université Pierre et Marie Curie - Paris 6, 4 place Jussieu - case 162, F-75252, France
*
Email address for correspondence: [email protected]

Abstract

The lattice Boltzmann method has become a widely used tool for the numerical simulation of fluid flows and in particular of turbulent flows. In this frame the inclusion of subgrid scale closures is of crucial importance and is not completely understood from the theoretical point of view. Here, we propose a consistent way of introducing subgrid closures in the BGK Boltzmann equation for large eddy simulations of turbulent flows. Based on the Hermite expansion of the velocity distribution function, we construct a hierarchy of subgrid scale terms, which are similar to those obtained for the Navier–Stokes equations, and discuss their inclusion in the lattice Boltzmann method scheme. A link between our approach and the standard way on including eddy viscosity models in the lattice Boltzmann method is established. It is shown that the use of a single modified scalar relaxation time to account for subgrid viscosity effects is not consistent in the compressible case. Finally, we validate the approach in the weakly compressible case by simulating the time developing mixing layer and comparing with experimental results and direct numerical simulations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aidun, C. K. & Clausen, R. J. 2010 Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42 (1), 439472.CrossRefGoogle Scholar
2. Ansumali, S., Karlin, I. V., Iliya, V. & Succi, S. 2004 Kinetic theory of turbulence modeling: smallness parameter, scaling and microscopic derivation of Smagorinsky model. Physica A: Statist. Mech. Appl. 338 (3–4), 379394.CrossRefGoogle Scholar
3. Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (3), 511525.CrossRefGoogle Scholar
4. Chapman, S. & Cowling, T. G. 1960 The Mathematical Theory of Non-uniform Gases. Cambridge University Press.Google Scholar
5. Chen, S. 2009 A large-eddy-based lattice Boltzmann model for turbulent flow simulation. Appl. Maths Comput. 215 (2), 591598.CrossRefGoogle Scholar
6. Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.CrossRefGoogle Scholar
7. Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S. & Yakhot, V. 2003 Extended Boltzmann kinetic equation for turbulent flows. Science 301 (5633), 633636.CrossRefGoogle ScholarPubMed
8. Chen, H., Orszag, S. A., Staroselsky, I. & Succi, S. 2004 Expanded analogy between Boltzmann kinetic theory of fluids and turbulence. J. Fluid Mech. 519, 301314.CrossRefGoogle Scholar
9. Chen, H., Succi, S. & Orszag, S. 1999 Analysis of subgrid scale turbulence using the Boltzmann Bhatnagar–Gross–Krook kinetic equation. Phys. Rev. E 59 (3), R2527R2530.CrossRefGoogle Scholar
10. Chikatamarla, S. S., Frouzakis, C. E., Karlin, I. V., Tomboulides, A. G. & Boulouchos, K. B. 2010 Lattice Boltzmann method for direct numerical simulation of turbulent flows. J. Fluid Mech. 656, 298308.CrossRefGoogle Scholar
11. Dellar, P. J. 2001 Bulk and shear viscosities in lattice Boltzmann equations. Phys. Rev. E 64 (3), 031203.CrossRefGoogle ScholarPubMed
12. Dong, Y.-H., Sagaut, P. & Marié, S. 2008 Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method. Phys. Fluids 20 (3), 035104.CrossRefGoogle Scholar
13. Eggels, J. G. M. 1996 Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. Intl J. Heat Fluid Flow 17 (3), 307323.CrossRefGoogle Scholar
14. Filippova, O., Succi, S., Mazzocco, F., Arrighetti, C., Bella, G. & Hänel, D. 2001 Multiscale lattice Boltzmann schemes with turbulence modelling. J. Comput. Phys. 170 (2), 812829.CrossRefGoogle Scholar
15. Garnier, E., Adams, N. & Sagaut, P. 2009 Large-eddy Simulation for Compressible Flows. Springer.CrossRefGoogle Scholar
16. Girimaji, S. S. 2007 Boltzmann kinetic equation for filtered fluid turbulence. Phys. Rev. Lett. 99 (3), 034501.CrossRefGoogle ScholarPubMed
17. Grad, H. 1949a Note on the -dimensional Hermite polynomials. Commun. Pure Appl. Maths 9, 325.CrossRefGoogle Scholar
18. Grad, H. 1949b On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 9, 331.CrossRefGoogle Scholar
19. Guo, Z., Shi, B. & Zheng, C. 2002 A coupled lattice BGK model for the Boussinesq equations. Intl J. Numer. Meth. Fluids 39, 325342.CrossRefGoogle Scholar
20. Hou, S., Sterling, J., Chen, S. & Doolen, G. D. 1996 A lattice Boltzmann subgrid model for high Reynolds number flows. Fields Inst. Comm. 6, 151-66.Google Scholar
21. Huang, K. 1987 Statistical Mechanics. John Wiley & Sons.Google Scholar
22. Kerimo, J. & Girimaji, S. 2007 Boltzmann-BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods. J. Turbul. 8.CrossRefGoogle Scholar
23. Krafczyk, M., Tölke, J. & Luo, L.-S. 2003 Large-eddy simulations with a multiple-relaxation-time LBE model. Intl J. Mod. Phys. B 17 (1–2), 3339.CrossRefGoogle Scholar
24. Labbé, O., Montreuil, E. & Sagaut, P. 2002 Large-eddy simulation of heat transfer over a backward facing step. Intl J. Numer. Heat Transfer, Part A 42 (1–2), 7390.CrossRefGoogle Scholar
25. Leonard, A. 1974 Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. A 18, 237248.CrossRefGoogle Scholar
26. Malaspinas, O. 2009 Lattice Boltzmann method for the simulation of viscoelastic fluid flows. PhD dissertation, EPFL, Lausanne, Switzerland.Google Scholar
27. Malaspinas, O. & Sagaut, P. 2011 Advanced large-eddy simulation for lattice Boltzmann methods: the approximate deconvolution model. Phys. Fluids 23.CrossRefGoogle Scholar
28. Meyers, J. & Sagaut, P. 2006 On the model coefficients for the standard and the variational multi-scale Smagorinsky model. J. Fluid Mech. 569, 287319.CrossRefGoogle Scholar
29. Meyers, J., Sagaut, P. & Geurts, B. J. 2006 Optimal model parameters for multi-obective large-eddy simulations. Phys. Fluids 18 (9), 095103.CrossRefGoogle Scholar
30. Meyers, J., Sagaut, P. & Geurts, B. J. 2007 A computational error assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model. J. Comput. Phys. 227 (1), 156173.CrossRefGoogle Scholar
31. Nie, X. B., Shan, X. & Chen, H. 2008 Galilean invariance of lattice Boltzmann models. Europhys. Lett. 81 (3), 34005.CrossRefGoogle Scholar
32. Premnath, K. N., Pattison, M. J. & Banerjee, S. 2009 Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method. Physica A: Statist. Mech. Appl. 388 (13), 26402658.CrossRefGoogle Scholar
33. Quéméré, P., Sagaut, P. & Couaillier, V. 2001 A new multidomain/multiresolution method for large-eddy simulation. Intl J. Numer. Meth. Fluids 36 (4), 391416.CrossRefGoogle Scholar
34. Quéméré, P., Sagaut, P. & Couaillier, V. 2002 Zonal multi-domain RANS/LES simulations of turbulent flows. Intl J. Numer. Meth. Fluids 40 (7), 903925.CrossRefGoogle Scholar
35. Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6 (2), 903923.CrossRefGoogle Scholar
36. Sagaut, P. 2005 Large Eddy Simulation for Incompressible Flows: An Introduction. Springer.Google Scholar
37. Sagaut, P. 2010 Toward advanced subgrid models for lattice-Boltzmann-based large-eddy simulation: theoretical formulations. In Mesoscopic Methods in Engineering and Science, International Conferences on Mesoscopic Methods in Engineering and Science, Comput. Maths Applics. 59 (7), 21942199.Google Scholar
38. Sagaut, P., Deck, S. & Terracol, M. 2006 Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press.CrossRefGoogle Scholar
39. Scagliarini, A., Biferale, L., Sbragaglia, M., Sugiyama, K. & Toschi, F. 2010a Lattice Boltzmann methods for thermal flows: Continuum limit and applications to compressible Rayleigh–Taylor systems. Phys. Fluids 22 (5), 055101.CrossRefGoogle Scholar
40. Scagliarini, A., Biferale, L., Sbragaglia, M., Sugiyama, K. & Toschi, F. 2010b Numerical simulations of compressible Rayleigh–Taylor turbulence in stratified fluids. Phys. Scr. 2010 (T142), 014017.CrossRefGoogle Scholar
41. Seror, C., Sagaut, P., Bailly, C. & Juvé, D. 2001 On the radiated noise computed by large-eddy simulation. Phys. Fluids 13 (2), 476487.CrossRefGoogle Scholar
42. Shan, X. & Chen, H. 2007 A general multiple-relaxation-time Boltzmann collision model. Intl J. Mod. Phys. C 18, 635.CrossRefGoogle Scholar
43. Shan, X., Yuan, X.-F. & Chen, H. 2006 Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413441.CrossRefGoogle Scholar
44. Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic equations. Mon. Weath. Rev. 91, 99164.2.3.CO;2>CrossRefGoogle Scholar
45. Succi, S. 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press.CrossRefGoogle Scholar
46. Terracol, M., Sagaut, P. & Basdevant, C. 2003 A time self-adaptive multilevel algorithm for large-eddy simulation. J. Comput. Phys. 184 (2), 339365.CrossRefGoogle Scholar
47. Weickert, M., Teike, G., Schmidt, O. & Sommerfeld, M. 2010 Investigation of the LES WALE turbulence model within the lattice Boltzmann framework. Comput. Maths Applic. 59 (7), 22002214.CrossRefGoogle Scholar
48. Wolf-Gladrow, D. A. 2000 Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer.CrossRefGoogle Scholar