Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T14:41:29.545Z Has data issue: false hasContentIssue false

Consistent nonlinear deterministic and stochastic wave evolution equations from deep water to the breaking region

Published online by Cambridge University Press:  22 August 2019

T. Vrecica
Affiliation:
School of Mechanical Engineering, Tel Aviv University, Haim Levanon 55, Tel Aviv 6997801, Israel
Y. Toledo*
Affiliation:
School of Mechanical Engineering, Tel Aviv University, Haim Levanon 55, Tel Aviv 6997801, Israel
*
Email address for correspondence: [email protected]

Abstract

Modelling the evolution of the wave field in coastal waters is a complicated task, partly due to triad nonlinear wave interactions, which are one of the dominant mechanisms in this area. Stochastic formulations already implemented into large-scale operational wave models, whilst very efficient, are one-dimensional in nature and fail to account for the majority of the physical properties of the wave field evolution. This paper presents new two-dimensional (2-D) formulations for the triad interactions source term. A quasi-two-dimensional deterministic mild slope equation is improved by including dissipation and first-order spatial derivatives in the nonlinear part of equation, significantly enhancing the accuracy in the breaking zone. The newly defined deterministic model is used to derive an updated stochastic model consistent from deep waters to the breaking region. It is localized following the approach derived in Vrecica & Toledo (J. Fluid Mech., vol. 794, 2016, pp. 310–342), to which several improvements are also presented. The model is compared to measurements of breaking and non-breaking spectral evolution, showing good agreement in both cases. Finally, the model is used to analyse several interesting 2-D properties of the shoaling wave field including the evolution of directionally spread seas.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 7999.10.1017/S0022112097006137Google Scholar
Agnon, Y. & Sheremet, A. 2000 Stochastic evolution models for nonlinear gravity waves over uneven topography. Adv. Coast. Ocean Engng 6, 103133.10.1142/9789812797537_0003Google Scholar
Annenkov, S. Y. & Shrira, V. I. 2006 Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech. 561, 181207.10.1017/S0022112006000632Google Scholar
Battjes, J. A. & Janssen, P. A. E. M. 1978 Energy loss and set-up due to breaking of random waves. In Proceedings of the 16th International Conference of Coastal Engineering (ASCE), vol. 1, pp. 569587. ASCE.Google Scholar
Becq-Girard, F., Forget, P. & Benoit, M. 1999 Non-linear propagation of unidirectional wave fields over varying topography. Coast. Engng 38, 91113.10.1016/S0378-3839(99)00043-5Google Scholar
Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves. Proc. R. Soc. Lond. A 289, 301321.Google Scholar
Bouws, E., Günther, H., Rosenthal, W. & Vincent, C. L. 1985 Similarity of the wind wave spectrum in finite depth water: 1. Spectral form. J. Geophys. Res. 90, 975986.10.1029/JC090iC01p00975Google Scholar
Bredmose, H., Agnon, Y., Madsen, P. A. & Schaffer, H. A. 2005 Wave transformation models with exact second-order transfer. Eur. J. Mech. (B/Fluids) 24 (6), 659682.10.1016/j.euromechflu.2005.05.001Google Scholar
Davis, J. R., Sheremet, A., Tian, M. & Saxena, S. 2014 A numerical implementation of a nonlinear mild slope model for shoaling directional waves. J. Mar. Sci. Engng 2, 140158.10.3390/jmse2010140Google Scholar
Eldeberky, Y. & Battjes, J. A. 1995 Parameterization of triad interactions in wave energy models. In Coastal Dynamics ’95 (ed. Dally, W. R. & Zeidler, R. B.), pp. 140148. ASCE.Google Scholar
Eldeberky, Y. & Battjes, J. A. 1996 Spectral modelling of wave breaking: application to Boussinesq equations. J. Geophys. Res. 101, 12531264.10.1029/95JC03219Google Scholar
Eldeberky, Y. & Madsen, P. A. 1999 Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coast. Engng 38, 124.10.1016/S0378-3839(99)00021-6Google Scholar
Elgar, S. & Guza, R. T. 1985 Observations of bispectra of shoaling of surface gravity waves. J. Fluid Mech. 161, 425448.10.1017/S0022112085003007Google Scholar
Fabrice, A. & Herbers, T. H. C. 2002 Bragg scattering of random surface gravity waves by irregular seabed topography. J. Fluid Mech. 451, 133.Google Scholar
Freilich, M. H. & Guza, R. T. 1984 Nonlinear effects on shoaling surface gravity waves. Phil. Trans. R. Soc. Lond. A 311, 141.10.1098/rsta.1984.0019Google Scholar
Groeneweg, J., van Gent, M., van Nieuwkoop, J. & Toledo, Y. 2015 Wave propagation into complex coastal systems and the role of nonlinear interactions. J. Waterways Port Coast. Ocean Engng 141, 17.Google Scholar
Hasselmann, D. E., Dunckel, M. & Ewing, J. A. 1973 Directional wave spectra observed during JONSWAP 1973. J. Phys. Oceanogr. 10, 12641280.10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;22.0.CO;2>Google Scholar
Herbers, T. H. C. & Burton, M. C. 1997 Nonlinear shoaling of directionally spread waves on a beach. J. Geophys. Res. 102, 2110121114.10.1029/97JC01581Google Scholar
Herbers, T. H. C., Orzech, M., Elgar, S. & Guza, R. T. 2003 Shoaling transformation of wave frequency-directional spectra. J. Geophys. Res. 108, C1.10.1029/2001JC001304Google Scholar
Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10, 906914.10.1175/1520-0485(1980)010<0906:OIWANW>2.0.CO;22.0.CO;2>Google Scholar
Holthuijsen, L. H., Booij, N. & Ris, R. C. 1993 A spectral wave model for the coastal zone. In Ocean Wave Measurement and Analysis, pp. 630641. ASCE.Google Scholar
Janssen, P. A. E. M. 2009 On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J. Fluid Mech. 637, 144.10.1017/S0022112009008131Google Scholar
Janssen, T.2006 Nonlinear surface waves over topography. PhD thesis, University of Delft.Google Scholar
Janssen, T. T., Herbers, T. H. C. & Battjes, J. A. 2006 Generalized evolution equations for nonlinear surface gravity waves over two-dimensional topography. J. Fluid Mech. 552, 393418.10.1017/S0022112006008743Google Scholar
Janssen, T. T., Herbers, T. H. C. & Battjes, J. A. 2008 Evolution of ocean wave statistics in shallow water: refraction and diffraction over seafloor topography. J. Geophys. Res. 113, C3.10.1029/2007JC004410Google Scholar
Kaihatu, J. M. & Kirby, J. T. 1995 Nonlinear transformation of waves in finite water depth. Phys. Fluids 8, 175188.Google Scholar
Kofoed-Hansen, H. & Rasmussen, J. H. 1998 Modeling of nonlinear shoaling based on stochastic evolution equations. Coast. Engng 33, 203232.10.1016/S0378-3839(98)00009-XGoogle Scholar
Lvov, Y. V., Nazarenko, S. & Pokorni, B. 2006 Discreteness and its effect on water-wave turbulence. Physica D: Nonlinear Phenomena 218, 2435.Google Scholar
Ma, Y., Chen, H., Ma, X. & Dong, G. 2017 A numerical investigation on nonlinear transformation of obliquely incident random waves on plane sloping bottoms. Coast. Engng 135, 6584.10.1016/j.coastaleng.2017.10.003Google Scholar
Mase, H. & Kirby, J. T. 1992 Hybrid frequency-domain KDV equation for random wave transformation. In Coastal Engineering 1992: Proceedings of the 23rd International Conference, pp. 474487. ASCE.Google Scholar
Salmon, J. E., Smit, P. B., Janssen, T. T. & Holthuijsen, L. H. 2016 A consistent collinear triad approximation for operational wave models. Ocean Model. 104, 203212.10.1016/j.ocemod.2016.06.009Google Scholar
Smit, P. B. & Janssen, T. T. 2013 The evolution of inhomogeneous wave statistics through a variable medium. J. Phys. Oceanogr. 43 (8), 17411758.10.1175/JPO-D-13-046.1Google Scholar
Smit, P. B., Janssen, T. T. & Herbers, T. H. C. 2015 Stochastic modeling of coherent wave fields over variable depth. J. Phys. Oceanogr. 45 (4), 11391154.10.1175/JPO-D-14-0219.1Google Scholar
Smith, J. M. 2004 Shallow-water spectral shapes. In Coastal Engineering 2004: Proceedings of the 29th International Conference, vol. 33, pp. 206217. World Scientific.Google Scholar
Stiassnie, M. & Drimer, N. 2006 Prediction of long forcing waves for harbor agitation studies. J. Waterways Port Coast. Ocean Engng 132 (3), 166171.10.1061/(ASCE)0733-950X(2006)132:3(166)Google Scholar
Toledo, Y. 2013 The oblique parabolic equation model for linear and nonlinear wave shoaling. J. Fluid Mech. 715, 103133.10.1017/jfm.2012.502Google Scholar
Toledo, Y. & Agnon, Y. 2012 Stochastic evolution equations with localized nonlinear shoaling coefficients. Eur. J. Mech. (B/Fluids) 34, 1318.10.1016/j.euromechflu.2012.01.007Google Scholar
Tolman, H. L. 2009 User manual and system documentation of WAVEWATCH III version 3.14. NOAA/NWS/NCEP/OMB Technical Note, vol. 276, pp. 1220.Google Scholar
Vrecica, T. & Toledo, Y. 2016 Consistent nonlinear stochastic evolution equations for deep to shallow water wave shoaling. J. Fluid Mech. 794, 310342.10.1017/jfm.2015.750Google Scholar
WAMDI group 1988 The WAM model – a third generation ocean wave prediction model. J. Phys. Oceanogr. 18, 17751810.10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;22.0.CO;2>Google Scholar
Yevnin, Y. & Toledo, Y. 2018 Reflection source term for the wave action equation. Ocean Model. 127, 4045.10.1016/j.ocemod.2018.05.001Google Scholar
Zijlema, M., Stelling, G. & Smit, P. B. 2012 SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Engng 58, 9921012.10.1016/j.coastaleng.2011.05.015Google Scholar