Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T10:24:29.462Z Has data issue: false hasContentIssue false

Computation of coupled double-diffusive convection–radiation including lattice Boltzmann simulation of fluid flow

Published online by Cambridge University Press:  03 July 2013

F. Moufekkir
Affiliation:
Laboratoire de Mécanique et Energétique, Département de Physique, Faculté des Sciences, Université Mohammed 1, 60000 Oujda, Morocco
M. A. Moussaoui
Affiliation:
Laboratoire de Mécanique et Energétique, Département de Physique, Faculté des Sciences, Université Mohammed 1, 60000 Oujda, Morocco
A. Mezrhab*
Affiliation:
Laboratoire de Mécanique et Energétique, Département de Physique, Faculté des Sciences, Université Mohammed 1, 60000 Oujda, Morocco
H. Naji
Affiliation:
Laboratoire Génie Civil et géo-Environnement (LGCgE–EA 4515), UArtois/FSA Béthune, F-62400 Béthune, France Laboratoire Génie Civil et géo-Environnement (LGCgE–EA 4515), Université Lille Nord de France, F-59000 Lille, France
*
Email address for correspondence: [email protected]

Abstract

This paper reports a numerical study of coupled double diffusive convection and radiation in a differentially heated square enclosure filled with non-grey air–CO2 (or air–H2O) mixtures. The numerical procedure is based on a hybrid scheme with the multiple relaxation time lattice Boltzmann method and the finite difference method. The fluid velocity is determined by the D2Q9 multiple relaxation time model, and the energy equation is discretized by the finite difference method to compute the temperature field, while the radiative part of the energy equation is calculated by the discrete ordinates method combined with the spectral line-based weighted sum of grey gases model. Depending on the boundary conditions, aiding and opposing flows occur as the result of temperature and concentration gradients. The effects of various parameters, such as the molar fraction on the flow structure, thermal and concentration fields, are investigated for aiding and opposing cases. The numerical results show that, in the presence of non-grey radiation, the heat transfer is decreased and the mass transfer is slightly modified. The gas radiation modifies the structure of the velocity and thermal fields by generating inclined stratifications and promoting instabilities in opposing flows.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aidun, C. K. & Clausen, J. R. 2010 Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439472.CrossRefGoogle Scholar
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision process in gases. I. Small amplitude process in charged and neutral one-component systems. Phys. Rev. 94, 511525.Google Scholar
Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145197.Google Scholar
Bratis, J. C. & Novotny, J. L. 1974 Radiation–convection interaction in the boundary layer regime of an enclosure. Intl J. Heat Mass Transfer 17, 2336.Google Scholar
Chen, S. & Doolen, G. D. 1998 Lattice Boltzamann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.Google Scholar
Chen, F., Xu, A., Zhang, G., Li, Y. & Succi, S. 2010 Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number. Europhys. Lett. 90, 4043.Google Scholar
Coelho, P. J., Teerling, O. J. & Roekaerts, D. 2003 Spectral radiative effects and turbulence/ radiation interaction in a non-luminous turbulent jet diffusion flame. Combust. Flame 133, 7591.Google Scholar
Colomer, G., Consul, R. & Oliva, A. 2007 Coupled radiation and natural convection: different approaches of the SLW model for a non-grey gas mixture. J. Quant. Spectrosc. Radiat. Transfer 107, 3046.Google Scholar
Denison, M. K. & Webb, B. W. 1993 A spectral line-based weighted-sum-of-grey-gases model for arbitrary RTE solvers. Trans. ASME: J. Heat Transfer 115, 10041012.Google Scholar
D’Humières, D. 1992 Generalized lattice Boltzmann equations. Rarefied gas dynamics: theory and simulations. Prog. Astronaut. Aeronaut. 159, 450458.Google Scholar
D’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P. & Luo, L. S. 2002 Multiple relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360, 437451.Google Scholar
Falcucci, G., Ubertini, S. & Succi, S. 2010 Lattice Boltzmann simulations of phase-separating flows at large density ratios: the case of doubly-attractive pseudo-potentials. Soft Matt. 6, 43574365.Google Scholar
Fiveland, W. A. 1984 Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures. J. Heat Transfer 106, 699706.Google Scholar
Fusegi, T. & Farouk, B. 1989 Laminar and turbulent natural convection–radiation interaction in a square enclosure filled with a nongrey gas. Numer. Heat Transfer A 15 (3), 303322.Google Scholar
Hottel, H. C. & Sarofim, A. F. 1967 Radiative Transfer. McGraw-Hill.Google Scholar
Lallemand, P. & Luo, L. S. 2000 Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability. Phys. Rev. E 61, 65466562.Google Scholar
Lallemand, P. & Luo, L.-S. 2003a Hybrid finite-difference thermal lattice Boltzmann equation. Intl J. Mod. Phys. B 17, 4148.CrossRefGoogle Scholar
Lallemand, P. & Luo, L. S. 2003b Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184, 406421.Google Scholar
Lallemand, P. & Luo, L.-S. 2003c Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. Phys. Rev. E 68, 036706.CrossRefGoogle ScholarPubMed
Meftah, S., Ibrahim, A., Lemonnier, D & Benbrik, A. 2009 Coupled radiation and double diffusive convection in non-grey air– ${\mathrm{CO} }_{2} $ and air– ${\mathrm{H} }_{2} \mathrm{O} $ mixtures in cooperating situations. Numer. Heat Transfer A 56 (1), 119.Google Scholar
Mezrhab, A., Moussaoui, M. A. & Naji, H. 2008 Lattice Boltzmann simulation of surface radiation and natural convection in a square cavity with an inner cylinder. J. Phys. D: Appl. Phys. 41, 55025517.Google Scholar
Modest, M. F. 1993 The weighted sum of grey gases model for arbitrary solution methods in radiative transfer. J. Heat Transfer 113, 650656.Google Scholar
Mondal, B. & Mishra, S. C. 2009 Simulation of natural convection in the presence of volumetric radiation using the lattice Boltzmann method. Numer. Heat Transfer A 55 (1), 1841.Google Scholar
Obrecht, C., Kuznik, F., Tourancheau, B. & Roux, J. J. 2011 A new approach to the lattice Boltzmann method for graphics processing units. Comput. Maths Applics. 61, 36283638.Google Scholar
Solovjov, V. P. & Webb, B. W. 2001 An efficient method for modelling radiative transfer in multi-component gas mixtures with soot. J. Heat Transfer 123, 450457.Google Scholar
Succi, S. 2001 The Lattice Boltzmann Method for Fluid Dynamics and Beyond. Oxford University Press.Google Scholar
Yamamoto, K., He, X. & Doolen, G. D. 2002 Simulation of combustion field with lattice Boltzmann method. J. Stat. Phys. 107, 367383.Google Scholar
Yucel, A., Acharya, S. & Williams, M. L. 1989 Natural convection and radiation in a square enclosure. Numer. Heat Transfer A 15 (2), 261278.Google Scholar