Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T13:08:18.508Z Has data issue: false hasContentIssue false

Compressibility effects on the structure of supersonic mixing layers: experimental results

Published online by Cambridge University Press:  26 April 2006

S. Barre
Affiliation:
Institut de Mécanique de Marseille, Institut de Mécanique Statistique de la Turbulence, U.M. CNRS-Université Aix-Marseille II no 380033, 12 avenue de Général Leclerc, 13003 Marseille, France
C. Quine
Affiliation:
Institut de Mécanique de Marseille, Institut de Mécanique Statistique de la Turbulence, U.M. CNRS-Université Aix-Marseille II no 380033, 12 avenue de Général Leclerc, 13003 Marseille, France
J. P. Dussauge
Affiliation:
Institut de Mécanique de Marseille, Institut de Mécanique Statistique de la Turbulence, U.M. CNRS-Université Aix-Marseille II no 380033, 12 avenue de Général Leclerc, 13003 Marseille, France

Abstract

An experiment in a supersonic mixing layer at convective Mach number Mc = 0.62 was performed to study the evolution of a flow from a turbulent boundary layer to a fully developed mixing layer. Turbulence measurements were taken and are interpreted with a diffusion model, which is well adapted to these flows. These measurements show that the level of turbulent friction varies with Mc proportionally to the spread rate. Our measurements appear to be consistent with the spreading rate of the layer and suggest that compressibility does not significantly alter the diffusion scheme at Mc = 0.62. This is also confirmed by a review of the existing data. Moreover, in the present flow, the anisotropy of the turbulent stresses seems to be affected by compressibility. The evolution of the radiated noise shows an increase corresponding to the developed part of the layer. Quantitative assessments of compressibility effects on turbulent quantities are given and are related to modifications in the structure of the flow.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arzoumanian, E. & Debiève, J. F. 1989 Un processus programmé pour les mesures par anémométrie à fil chaud en écoulement supersonique. European Telemetry and Test Conf., Marseille, France, June 1989.
Barre, S. 1993 Estimate of convective velocity in a supersonic turbulent mixing layer. AIAA J. (to appear).Google Scholar
Barre, S., Dupont, P. & Dussauge, J. P. 1992a Hot wire measurements in turbulent transonic flows. Eur. J. Mech. B Fluids 11, 439454.Google Scholar
Barre, S., Dupont, P. & Dussauge, J. P. 1992b Convection velocity of large scale structures in a supersonic mixing layer. IUTAM Symp. Eddy Structure Identification in Free Turbulent Shear Flows, Poitiers, France, October 1992.
Bell, J. H. & Mehta, R. D. 1990 Development of a two-stream mixing layer with tripped and untripped boundary layers. AIAA J. 28, 20342042.Google Scholar
Birch, S. F. & Eggers, J. M. 1973 Free turbulent shear flows. NASA Rep. SP-321.
Blumen, W., Drazin, P. G. & Billings, D. F. 1975 Shear layer instability of an inviscid compressible fluid. Part 2. J. Fluid Mech. 71, 305316.Google Scholar
Bogdanoff, D. W. 1983 Compressibility effects in turbulent shear layers. AIAA J. 21, 926927.Google Scholar
Bonnet, J. P. & Debisschop, J. R. 1993 Experimental studies of the turbulent structure of supersonic mixing layers. AIAA Paper 93-0217.
Bradshaw, P. 1966 The effect of initial conditions on the development of a free shear layer. J. Fluid Mech. 26, 225236.Google Scholar
Bradshaw, P. & Ferriss, D. H. 1971 Calculation of boundary layer development using the turbulent energy equation: compressible flow on adiabatic walls. J. Fluid Mech. 46, 83110.Google Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structures in turbulent mixing layers. J. Fluid Mech. 64, 775781.Google Scholar
Chinzei, N., Masuya, G., Komuro, T., Murakami, A. & Kudou, K. 1986 Spreading of two stream supersonic turbulent mixing layer. Phys. Fluids A 29, 13451347.Google Scholar
Clemens, N. T. & Mungal, M. G. 1990 Two- and three-dimensional effects in the supersonic mixing layer. AIAA Paper 90-1978.
Debisschop, J. R. 1993 Comportement de la turbulence en couches de mélange supersoniques. Thèse de Doctorat de l’Université de Poitiers.
Dimotakis, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24, 17911796.Google Scholar
Dimotakis, P. E. 1991 Turbulent free shear layer mixing and combustion. Prog. Astronaut. Aeronaut. 137, 265340.Google Scholar
Djeridane, T., Amielh, M., Anselmet, F. & Fulachier, L. 1993 Experimental investigation of the near-field region of variable density turbulent jets. 5th Intl Symp. on Refined Flow Modelling and Turbulence Measurements, Paris, France, September 7–10, 1993 (submitted).
Dupont, P. & Debiève, J. F. 1989 A measurement method of temperature and velocity fluctuations from transonic to supersonic regimes. European Telemetry and Test Conf., Marseille, France, June, 1989.
Dupont, P., Barre, S., Delboulbe, E. & Dussauge, J. P. 1993 Space-time properties of supersonic turbulent mixing-layers. Symp. on Transitional and Turbulent Compressible Flows, 1993 ASME Fluids Engineering Conf., Washington, DC, June 20–23, 1993 (to be presented).
Dutton, J. C., Burr, R. F., Goebel, S. G. & Messersmith, N. L. 1990 Compressibility and mixing in turbulent free shear layer. 12th Symp. on Turbulence, Missouri-Rolla, Sept. 1990.
Dzioma, B. & Fiedler, H. E. 1985 Effect of initial conditions on two-dimensional free shear layer. J. Fluid Mech. 152, 419442.Google Scholar
Elliott, G. S. & Samimy, M. 1990 Compressibility effects in free shear layers. Phys. Fluids A 2, 12311240.Google Scholar
Fernholz, H. H. 1971 Ein halbempirisches Gesetz für die Wandreibung in kompressiblen turbulenten Grenzschichten bei isothermer und adiabater Wand. Z. Angew. Math. Mech. 51, 146147.Google Scholar
Fiedler, H. E., Lummer, M. & Nottmeyer, K. 1990 The plane mixing layer between parallel streams of different velocities and different densities. Proc. MHD and Turbulence Conf., Jerusalem, 1990. AIAA.
Gaviglio, J. 1987 Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer. Intl J. Heat Mass Transfer 30, 911926.Google Scholar
Hall, J. L. 1991 An experimental investigation of structure, mixing and combustion in compressible turbulent shear layers. PhD thesis, California Institute of Technology.
Hinze, J. O. 1959 Turbulence. McGraw Hill.
Horstman, C. C. & Rose, W. C. 1977 Hot wire anemometry in transonic flows. AIAA J. 15, 395401.Google Scholar
Ikawa, H. 1973 Turbulent mixing layer experiment in supersonic flow. PhD thesis, California Institute of Technology.
Ikawa, H. & Kubota, T. 1975 Investigation of supersonic turbulent mixing layer with zero pressure gradient. AIAA J. 13, 566572.Google Scholar
Kistler, A. L. 1959 Fluctuation measurements in a supersonic turbulent boundary layer. Phys. Fluids 2, 290296.Google Scholar
Klebanoff, P. S. 1955 Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Rep. 1247.
Kline, S. J., Cantwell, B. J. & Lilley, G. M. 1980 Proc. 1980 Conf. on Complex Turbulent Flows, Vol. I, pp. 364366. Stanford University.
Kovasznay, L. S. G. 1953 Turbulence in supersonic flows. J. Aero. Sci. 20, 657682.Google Scholar
Lau, J. C. 1981 Effects of exit Mach number and temperature on mean flow and turbulence characteristics in round jets. J. Fluid Mech. 105, 193218.Google Scholar
Lau, J. C., Morris, P. J. & Fisher, M. J. 1979 Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech. 93, 127.Google Scholar
Laufer, J. 1961 Aerodynamic noise in supersonic wind tunnels. J. Aerospace Sci. 28, 685692.Google Scholar
Liepmann, H. & Laufer, J. 1947 Investigation of free turbulent mixing. NACA TN 1257.Google Scholar
Liepmann, H. & Roshko, A. 1962 Eléments de la Dynamique des Gaz. Gauthier-Villars.
McIntyre, S. S. & Settles, G. S. 1991 Optical experiments on axisymmetric compressible turbulent mixing layers. AIAA Paper 91-0623.
Miles, J. W. 1958 On the disturbed motion of a plane vortex sheet. J. Fluid Mech. 4, 538552.Google Scholar
Morkovin, M. V. 1956 Fluctuations and hot-wire aneomometry in compressible flows. AGARD 24.Google Scholar
Morkovin, M. V. 1962 Effects of compressibility on turbulent flows. Colloque sur la Mécanique de la Turbulence, Marseille, France, Aout 1961.
Norman, M. L. & Winkler, A. 1985 Supersonic jets. Los Alamos Science, Spring/Summer 1985.
Nottmeyer, K. 1990 Experimentelle Untersuchung der Ausbildung und Turbulenzstruktur von turbulenten Scherschichten zwischen Gasströmen unterschiedlicher Geschwindigkeit und Dichte. PhD thesis, Technische Universität Berlin, Hermann-Föttinger-Institut für Thermo-und Fluiddynamik.
Oertel, H. 1979 Mach wave radiation of hot supersonic jets investigated by means of the shock tube and new optical techniques. Proc. 12th Intl Symp. of Shocks Tubes and Waves, Jerusalem, pp. 266275.
Pai, S. I. 1954 On the stability of a vortex sheet in an inviscid compressible fluid. J. Aero Sci. 21, 325328.Google Scholar
Panchapakesan, N. R. & Lumley, J. L. 1993a Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197223.Google Scholar
Panchapakesan, N. R. & Lumley, J. L. 1993b Turbulence measurements in axisymmetric jets of air and helium. Part 1. Helium jet. J. Fluid Mech. 246, 225247.Google Scholar
Papamoschou, D. 1986 Experimental investigation of heterogeneous compressible shear layers. PhD thesis, California Institute of Technology.
Papamoschou, D. 1989 Structure of the compressible turbulent shear layer. AIAA Paper 89-0126.
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.Google Scholar
Petrie, H. L., Samimy, M. & Addy, A. L. 1986 Compressible separated flows. AIAA J. 24, 19711978.Google Scholar
Quine, C. 1990 Etude expérimentale et numérique de couche de mélange turbulentes supersoniques et isobares. Thèse de doctorat, Université d’Aix-Marseille II.
Samimy, M. & Elliott, G. S. 1990 Effects of compressibility on the characteristics of free shear layers. AIAA J. 28, 439445.Google Scholar
Samimy, M., Petrie, H. L. & Addy, A. L. 1986 A study of compressible turbulent reattaching free shear layer. AIAA J. 24, 261267.Google Scholar
Samimy, M., Reeder, M. F. & Elliott, G. S. 1992 Compressibility effects on large structures in free shear flows. Phys. Fluids A 4, 12511258.Google Scholar
Sandham, N. D. & Reynolds, W. C. 1989 Growth of oblique waves in the mixing layer at high Mach number. Seventh Symp. on Turbulent Shear Flows, Stanford University, August 1989.
Sarkar, S., Erlebacher, G., Hussaini, M. Y. & Kreiss, H. O. 1991 The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.Google Scholar
Schlichting, H. 1964 Layer Theory, 6th edn. McGraw-Hill.
St-Ameur, M., Gathmann, R., Chollet, J. P. & Mathey, F. 1992 Turbulence dans les écoulements supersoniques libres ou confinés, couches de mélange et jets. Colloque sur les Écoulements Hypersoniques, Garchy, France, 5–7 October 1992.
Sirieix, M. & Solignac, J. L. 1968 Contribution à l’étude expérimentale de la couche de mélange turbulent isobare d’un écoulement supersonique. Symp. on Separated Flows, AGARD Conf., Proc. vol. 4, pp. 241270.
Smits, A. J. & Dussauge, J. P. 1989 Hot wire aneomometry in supersonic flow. AGARD 315.Google Scholar
Smits, A. J., Spina, E. S., Alving, A. E., Smith, R. W., Fernando, E. M. & Donovan, J. F. 1989 A comparison of the turbulence structure of subsonic and supersonic boundary layers. Phys. Fluids A 1, 18651875.Google Scholar
Wagner, R. D. 1973 Mean flow and turbulence measurements in a Mach 5 free shear layer. NASA TN D7366.
Wygnanski, I. & Fiedler, H. 1970 The two-dimensional mixing region. J. Fluid Mech. 41, 327361.Google Scholar
Zeman, O. 1990 Dilatation dissipation: the concept and application in modeling compressible mixing layers. Phys. Fluids, A 2, 178188.Google Scholar
Zeman, O. 1992 Similarity in supersonic mixing layers. AIAA J. 30, 12771283.Google Scholar