Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-25T00:12:42.983Z Has data issue: false hasContentIssue false

Comparison between shear-driven and pressure-driven oscillatory flows over ripples

Published online by Cambridge University Press:  31 October 2024

Umberto Ciri*
Affiliation:
Department of Mechanical Engineering, University of Puerto Rico at Mayagüez, 259 Blvd. Alfonso Valdés Cobián, Mayagüez, PR 00680, USA
Sylvia Rodríguez-Abudo
Affiliation:
Department of Engineering Sciences and Materials, University of Puerto Rico at Mayagüez, 259 Blvd. Alfonso Valdés Cobián, Mayagüez, PR 00680, USA
Stefano Leonardi
Affiliation:
Department of Mechanical Engineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations of oscillatory flow over a bed made of ripples have been performed. Two oscillatory flow forcing mechanisms have been compared: (i) a sinusoidal external pressure gradient (pressure-driven flow); and (ii) a sinusoidal velocity boundary conditions on the rippled bed (shear-driven flow). In the second case, the oscillations of the bed are such that when observed from a reference frame fixed with the bed, the free stream follows the same harmonic oscillation as in the pressure-driven case. While the outer layers have the same dynamics in the two cases, close to the bed differences are observed during the cycle, mostly because the large form drag across the ripples cannot be reproduced in the shear-driven case. A comparison against experimental data from an oscillating tray apparatus provides a relatively good agreement for the phase-averaged flow when the same forcing is considered (i.e. a shear-driven flow). The pressure-driven case has a comparable error to the shear-driven numerical results over the crest of the ripples, whereas the discrepancy is larger at the troughs. The discrepancies between the two cases are more limited for time-averaged flow quantities, such as the mean flow pattern and the time-averaged Reynolds stress distribution. This suggests that numerical or experimental shear-driven configurations may capture well the net effects of coastal transport processes (which occur in pressure-driven oscillatory flow), but care should be exercised in interpreting phase-dependent dynamics near the troughs. More work is needed to fully assess the sensitivity to the forcing mechanisms in different flow regimes.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Admiraal, D., Musalem-Jara, R., García, M. & Niño, Y. 2006 Vortex trajectory hysteresis above self-formed vortex ripples. J. Hydraul. Res. 44 (4), 437450.CrossRefGoogle Scholar
Aponte Cruz, E.R. & Rodríguez-Abudo, S. 2024 Simulations of scalar transport in oscillatory flow over a wavy wall. J. Hydraul. Res. 62 (1), 1424.CrossRefGoogle Scholar
Armaly, B.F., Durst, F., Pereira, J.C.F. & Schönung, B. 1983 Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473496.CrossRefGoogle Scholar
Bagnold, R.A. 1946 Motion of waves in shallow water. Interaction between waves and sand bottoms. Proc. R. Soc. A 187 (1008), 118.Google Scholar
Barr, B.C., Slinn, D.N., Pierro, T. & Winters, K.B. 2004 Numerical simulation of turbulent, oscillatory flow over sand ripples. J. Geophys. Res.: Oceans 109, C09009.Google Scholar
Batchelor, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Blondeaux, P. 2001 Mechanics of coastal forms. Annu. Rev. Fluid Mech. 33 (1), 339370.CrossRefGoogle Scholar
Blondeaux, P., Scandura, P. & Vittori, G. 2004 Coherent structures in an oscillatory separated flow: numerical experiments. J. Fluid Mech. 518, 215229.CrossRefGoogle Scholar
Blondeaux, P. & Vittori, G. 1991 Vorticity dynamics in an oscillatory flow over a rippled bed. J. Fluid Mech. 226, 257289.CrossRefGoogle Scholar
Chalmoukis, I.A., Dimas, A.A. & Grigoriadis, D.G.E. 2020 Large-eddy simulation of turbulent oscillatory flow over three-dimensional transient vortex ripple geometries in quasi-equilibrium. J. Geophys. Res.: Earth Surf. 125 (8), e2019JF005451.Google Scholar
Ciri, U., Tubije, J.M.B., Guzmán-Hernandez, M.A., Rodríguez-Abudo, S. & Leonardi, S. 2023 Direct numerical simulations of oscillatory boundary layers over rough walls. Intl J. Heat Fluid Flow 103, 109170.CrossRefGoogle Scholar
Du Toit, C.G. & Sleath, J.F.A. 1981 Velocity measurements close to rippled beds in oscillatory flow. J. Fluid Mech. 112, 7196.CrossRefGoogle Scholar
Dunbar, D., van der A, D.A., Scandura, P. & O'Donoghue, T. 2023 An experimental and numerical study of turbulent oscillatory flow over an irregular rough wall. J. Fluid Mech. 955, A33.CrossRefGoogle Scholar
Fytanidis, D.K., García, M.H. & Fischer, P.F. 2021 Mean flow structure and velocity–bed shear stress maxima phase difference in smooth wall, transitionally turbulent oscillatory boundary layers: direct numerical simulations. J. Fluid Mech. 928, A33.CrossRefGoogle Scholar
Grigoriadis, D.G.E., Dimas, A.A. & Balaras, E. 2012 Large-eddy simulation of wave turbulent boundary layer over rippled bed. Coast. Engng 60, 174189.CrossRefGoogle Scholar
Hara, T. & Mei, C.C. 1990 Oscillating flows over periodic ripples. J. Fluid Mech. 211, 183209.CrossRefGoogle Scholar
Hare, J., Hay, A.E., Zedel, L. & Cheel, R. 2014 Observations of the space–time structure of flow, turbulence, and stress over orbital-scale ripples. J. Geophys. Res.: Oceans 119 (3), 18761898.CrossRefGoogle Scholar
Hay, A.E., Zedel, L., Cheel, R. & Dillon, J. 2012 On the vertical and temporal structure of flow and stress within the turbulent oscillatory boundary layer above evolving sand ripples. Cont. Shelf Res. 46, 3149.CrossRefGoogle Scholar
He, S. & Jackson, J.D. 2009 An experimental study of pulsating turbulent flow in a pipe. Eur. J. Mech. (B/Fluids) 28 (2), 309320.CrossRefGoogle Scholar
Hussain, A.K.M.F. & Reynolds, W.C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41 (2), 241258.CrossRefGoogle Scholar
Jackson, P.S. 1981 On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 1525.CrossRefGoogle Scholar
Jensen, B.L., Sumer, B.M. & Fredsøe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265297.CrossRefGoogle Scholar
Jonsson, I.G. & Carlsen, N.A. 1976 Experimental and theoretical investigations in an oscillatory turbulent boundary layer. J. Hydraul. Res. 14 (1), 4560.CrossRefGoogle Scholar
Kalkanis, G. 1957 Turbulent flow near an oscillating wall. Tech. Rep. 97. Army Corps of Engineers.Google Scholar
Kaneko, A. & Honji, H. 1979 Double structures of steady streaming in the oscillatory viscous flow over a wavy wall. J. Fluid Mech. 93 (4), 727736.CrossRefGoogle Scholar
Kaptein, S.J., Duran-Matute, M., Roman, F., Armenio, V. & Clercx, H.J.H. 2020 Existence and properties of the logarithmic layer in oscillating flows. J. Hydraul. Res. 58 (4), 687700.CrossRefGoogle Scholar
Komar, P.D. & Miller, M.C. 1973 The threshold of sediment movement under oscillatory water waves. J. Sedim. Petrol. 43 (4), 1101–1110Google Scholar
Komar, P.D. & Miller, M.C. 1975 The initiation of oscillatory ripple marks and the development of plane-bed at high shear stresses under waves. J. Sedim. Petrol. 45 (3), 697703.Google Scholar
Lamb, H. 1933 Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
Le, H., Moin, P. & Kim, J. 1997 Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349374.CrossRefGoogle Scholar
Leftheriotis, G. & Dimas, A. 2016 Large-eddy simulation of oscillatory flow and morphodynamics over ripples. Coast. Engng Proc. 35, 23.Google Scholar
Leonardi, S. & Castro, I.P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.CrossRefGoogle Scholar
Leonardi, S., Orlandi, P. & Antonia, R.A. 2007 Properties of d- and k-type roughness in a turbulent channel flow. Phys. Fluids 19 (12), 125101.CrossRefGoogle Scholar
Leonardi, S., Orlandi, P., Djenidi, L. & Antonia, R.A. 2004 Structure of turbulent channel flow with square bars on one wall. Intl J. Heat Fluid Flow 25 (3), 384392.CrossRefGoogle Scholar
Leonardi, S., Orlandi, P., Smalley, R.J., Djenidi, L. & Antonia, R.A. 2003 Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229238.CrossRefGoogle Scholar
Lhermitte, P. 1958 Contribution à l’étude de la couche limite des houles monochromatiques. La Houille Blanche 44, 366376.CrossRefGoogle Scholar
Li, H. 1954 Stability of oscillatory laminar flow along a wall. Tech. Rep. 47. Army Corps of Engineers.Google Scholar
Longuet-Higgins, M.S. 1981 Oscillating flow over steep sand ripples. J. Fluid Mech. 107, 135.CrossRefGoogle Scholar
Lyne, W.H. 1971 Unsteady viscous flow over a wavy wall. J. Fluid Mech. 50 (1), 3348.CrossRefGoogle Scholar
Manna, M., Vacca, A. & Verzicco, R. 2012 Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 1. Time-averaged analysis. J. Fluid Mech. 700, 246282.CrossRefGoogle Scholar
Manna, M., Vacca, A. & Verzicco, R. 2015 Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 2. Phase-averaged analysis. J. Fluid Mech. 766, 272296.CrossRefGoogle Scholar
Manohar, M. 1955 Mechanics of bottom sediment movement due to wave action. Tech. Rep. 75. Army Corps of Engineers.Google Scholar
Mier, J.M., Fytanidis, D.K. & García, M.H. 2021 Mean flow structure and velocity–bed shear stress maxima phase difference in smooth wall, transitionally turbulent oscillatory boundary layers: experimental observations. J. Fluid Mech. 922, A29.CrossRefGoogle Scholar
Mirfenderesk, H. & Young, I.R. 2003 Direct measurements of the bottom friction factor beneath surface gravity waves. Appl. Ocean Res. 25 (5), 269287.CrossRefGoogle Scholar
Nagib, H.M. & Chauhan, K.A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20, 101518.CrossRefGoogle Scholar
Nichols, C.S. & Foster, D.L. 2007 Full-scale observations of wave-induced vortex generation over a rippled bed. J. Geophys. Res.: Oceans 112, C10015.Google Scholar
Önder, A. & Yuan, J. 2019 Turbulent dynamics of sinusoidal oscillatory flow over a wavy bottom. J. Fluid Mech. 858, 264314.CrossRefGoogle Scholar
Orlandi, P. 2000 Fluid Flow Phenomena: A Numerical Toolkit. Kluwer Academic Publishers.CrossRefGoogle Scholar
Orlandi, P. & Leonardi, S. 2006 DNS of turbulent channel flows with two- and three-dimensional roughness. J. Turbul. 7, N73.CrossRefGoogle Scholar
Penko, A.M., Calantoni, J., Rodríguez-Abudo, S., Foster, D.L. & Slinn, D.N. 2013 Three-dimensional mixture simulations of flow over dynamic rippled beds. J. Geophys. Res.: Oceans 118 (3), 15431555.CrossRefGoogle Scholar
Ramaprian, B.R. & Tu, S.W. 1983 Fully developed periodic turbulent pipe flow. Part 2. The detailed structure of the flow. J. Fluid Mech. 137, 5981.CrossRefGoogle Scholar
Raupach, M.R. & Shaw, R.H. 1982 Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol. 22 (1), 7990.CrossRefGoogle Scholar
Riley, N. 1966 On a sphere oscillating in a viscous fluid. Q. J. Mech. Appl. Maths 19 (4), 461472.CrossRefGoogle Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 4365.CrossRefGoogle Scholar
Rodríguez-Abudo, S. & Foster, D.L. 2014 Unsteady stress partitioning and momentum transfer in the wave bottom boundary layer over movable rippled beds. J. Geophys. Res.: Oceans 119 (12), 85308551.CrossRefGoogle Scholar
Rodríguez-Abudo, S., Foster, D.L. & Henriquez, M. 2013 Spatial variability of the wave bottom boundary layer over movable rippled beds. J. Geophys. Res.: Oceans 118 (7), 34903506.CrossRefGoogle Scholar
Salon, S., Armenio, V. & Crise, A. 2007 A numerical investigation of the Stokes boundary layer in the turbulent regime. J. Fluid Mech. 570, 253296.CrossRefGoogle Scholar
Sato, S., Mimura, N. & Watanabe, A. 1984 Oscillatory boundary layer flow over rippled beds. Coast. Engng Proc. 19, 154.CrossRefGoogle Scholar
Scandura, P., Vittori, G. & Blondeaux, P. 2000 Three-dimensional oscillatory flow over steep ripples. J. Fluid Mech. 412, 355378.CrossRefGoogle Scholar
Schlichting, H. 1979 Boundary-layer Theory. McGraw Hill.Google Scholar
Scotti, A. & Piomelli, U. 2001 Numerical simulation of pulsating turbulent channel flow. Phys. Fluids 13 (5), 13671384.CrossRefGoogle Scholar
Sleath, J.F.A. 1975 A contribution to the study of vortex ripples. J. Hydraul. Res. 13 (3), 315328.CrossRefGoogle Scholar
Sleath, J.F.A. 1976 On rolling-grain ripples. J. Hydraul. Res. 14 (1), 6981.CrossRefGoogle Scholar
Sleath, J.F.A. 1987 Turbulent oscillatory flow over rough beds. J. Fluid Mech. 182, 369409.CrossRefGoogle Scholar
Sleath, J.F.A. 1988 Transition in oscillatory flow over rough beds. ASCE J. Waterway Port Coastal Ocean Engng 114 (1), 1833.CrossRefGoogle Scholar
Sleath, J.F.A. 1991 Velocities and shear stresses in wave-current flows. J. Geophys. Res.: Oceans 96 (C8), 1523715244.CrossRefGoogle Scholar
Smith, D. & Sleath, J.F.A. 2005 Transient ripples in oscillatory flows. Cont. Shelf Res. 25 (4), 485501.CrossRefGoogle Scholar
Smith, P.A. & Stansby, P.K. 1985 Wave-induced bed flows by a Lagrangian vortex scheme. J. Comput. Phys. 60 (3), 489516.CrossRefGoogle Scholar
Stokes, G.G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Camb. Phil. Trans. IX, 8106, reprinted in Math. Phys. Pap., Cambridge, vol. III, pp. 1–141, 1901.Google Scholar
Stuart, J.T. 1963 Unsteady boundary layers. In Laminar Boundary Layers (ed. L. Rosenhead), pp. 349–408. Dover.Google Scholar
Stuart, J.T. 1966 Double boundary layers in oscillatory viscous flow. J. Fluid Mech. 24 (4), 673687.CrossRefGoogle Scholar
Tardu, S.F. & Binder, G. 1997 Reaction of bursting to an oscillating homogeneous pressure gradient. Eur. J. Mech. (B/Fluids) 16 (1), 89120.Google Scholar
Taylor, P.S. & Seddighi, M. 2024 Turbulent–turbulent transient concept in pulsating flows. J. Fluid Mech. 982, A20.CrossRefGoogle Scholar
Vargas-Martinez, J.C. & Rodríguez-Abudo, S. 2024 Simultaneous velocity and concentration measurements over a rippled boundary subjected to oscillating fluid forcing. Exp. Fluids 65 (7), 112.CrossRefGoogle Scholar
Vincent, G.E. 1957 Contribution to the study of sediment transport on a horizontal bed due to wave action. Coast. Engng Proc. 6, 20.CrossRefGoogle Scholar
Vittori, G. 1989 Non-linear viscous oscillatory flow over a small amplitude wavy wall. J. Hydraul. Res. 27 (2), 267280.CrossRefGoogle Scholar
Young, J.S.L. & Sleath, J.F.A. 1990 Ripple formation in combined transdirectional steady and oscillatory flow. Sedimentology 37 (3), 509516.CrossRefGoogle Scholar
Yuan, J. & Piomelli, U. 2015 Numerical simulation of a spatially developing accelerating boundary layer over roughness. J. Fluid Mech. 780, 192214.CrossRefGoogle Scholar
Supplementary material: File

Ciri et al. supplementary movie

Color contours of phase-averaged streamwise velocity field with super-imposed streamfunction isocontours over a few oscillation cycles.
Download Ciri et al. supplementary movie(File)
File 16 MB