Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T00:01:41.877Z Has data issue: false hasContentIssue false

The combined hydrodynamic and thermodynamic effects of immobilized proteins on the diffusion of mobile transmembrane proteins

Published online by Cambridge University Press:  27 August 2019

Rohit R. Singh
Affiliation:
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
Ashok S. Sangani
Affiliation:
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
Susan Daniel
Affiliation:
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
Donald L. Koch*
Affiliation:
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
*
Email address for correspondence: [email protected]

Abstract

The plasma membranes of cells are thin viscous sheets in which some transmembrane proteins have two-dimensional mobility and some are immobilized. Previous studies have shown that immobile proteins retard the short-time diffusivity of mobile particles through hydrodynamic interactions and that steric effects of immobile proteins reduce the long-time diffusivity in a model that neglects hydrodynamic interactions. We present a rigorous derivation of the long-time diffusivity of a single mobile protein interacting hydrodynamically and thermodynamically with an array of immobile proteins subject to periodic boundary conditions. This method is based on a finite element method (FEM) solution of the probability density of the mobile protein diffusing with a position-dependent mobility determined through a multipole solution of Stokes equations. The simulated long-time diffusivity in square arrays decreases as the spacing in the array approaches the particle size in a manner consistent with a lubrication analysis. In random arrays, steric effects lead to a percolation threshold volume fraction above which long-time diffusion is arrested. The FEM/multipole approach is used to compute the long-time diffusivity far away from this threshold. An approximate analysis of mobile protein diffusion through a network of pores connected by bonds with resistances determined by the FEM/multipole calculations is then used to explore higher immobile area fractions and to evaluate the finite simulation cell size scaling behaviour of diffusion near the percolation threshold. Surprisingly, the ratio of the long-time diffusivity to the spatially averaged short-time diffusivity in these two-dimensional fixed arrays is higher in the presence of hydrodynamic interactions than in their absence. Finally, the implications of this work are discussed, including the possibility of using the methods developed here to investigate more complex diffusive phenomena observed in cell membranes.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235 (1200), 6777.Google Scholar
Banchio, A. J. & Brady, J. F. 2003 Accelerated Stokesian dynamics: Brownian motion. J. Chem. Phys. 118 (22), 1032310332.10.1063/1.1571819Google Scholar
Brady, J. F. 1994 The long-time self-diffusivity in concentrated colloidal dispersions. J. Fluid Mech. 272, 109134.10.1017/S0022112094004404Google Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.10.1146/annurev.fl.20.010188.000551Google Scholar
Brannigan, G. & Brown, F. L. H. 2006 A consistent model for thermal fluctuations and protein-induced deformations in lipid bilayers. Biophys. J. 90 (5), 15011520.10.1529/biophysj.105.075838Google Scholar
Brenner, H. 1980 Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. Lond. A 297 (1430), 81133.10.1098/rsta.1980.0205Google Scholar
Brenner, H. & Adler, P. M. 1982 Dispersion resulting from flow through spatially periodic porous media II. Surface and intraparticle transport. Phil. Trans. R. Soc. Lond. A 307 (1498), 149200.10.1098/rsta.1982.0108Google Scholar
Brinkman, H. C. 1949 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1 (1), 2734.10.1007/BF02120313Google Scholar
Brown, F. L. H. 2003 Regulation of protein mobility via thermal membrane undulations. Biophys. J. 84 (2), 842853.10.1016/S0006-3495(03)74903-0Google Scholar
Bussell, S. J., Hammer, D. A. & Koch, D. L. 1994 The effect of hydrodynamic interactions on the tracer and gradient diffusion of integral membrane proteins in lipid bilayers. J. Fluid Mech. 258, 167190.10.1017/S0022112094003289Google Scholar
Bussell, S. J., Koch, D. L. & Hammer, D. A. 1992 The resistivity and mobility functions for a model system of two equal-sized proteins in a lipid bilayer. J. Fluid Mech. 243, 679697.10.1017/S002211209200288XGoogle Scholar
Bussell, S. J., Koch, D. L. & Hammer, D. A. 1995 Effect of hydrodynamic interactions on the diffusion of integral membrane proteins: diffusion in plasma membranes. Biophys. J. 68 (5), 18361849.10.1016/S0006-3495(95)80360-7Google Scholar
Charlaix, E., Guyon, E. & Roux, S. 1987 Permeability of a random array of fractures of widely varying apertures. Trans. Porous Med. 2 (1), 3143.Google Scholar
Dodd, T. L., Hammer, D. A., Sangani, A. S. & Koch, D. L. 1995 Numerical simulations of the effect of hydrodynamic interactions on diffusivities of integral membrane proteins. J. Fluid Mech. 293, 147180.10.1017/S0022112095001674Google Scholar
Ermak, D. L. & McCammon, J. A. 1978 Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69 (4), 13521360.10.1063/1.436761Google Scholar
Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K. & Kusumi, A. 2002 Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157 (6), 10711081.10.1083/jcb.200202050Google Scholar
Geuzaine, C. & Remacle, J.-F. 2009 Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Intl J. Numer. Meth. Engng 79 (11), 13091331.10.1002/nme.2579Google Scholar
Grassia, P. S., Hinch, E. J. & Nitsche, L. C. 1995 Computer simulations of Brownian motion of complex systems. J. Fluid Mech. 282, 373403.10.1017/S0022112095000176Google Scholar
Hasimoto, H. 1959 On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5 (02), 317328.10.1017/S0022112059000222Google Scholar
Helfrich, W. 1973 Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28 (11–12), 693703.10.1515/znc-1973-11-1209Google Scholar
Jin, S., Haggie, P. M. & Verkman, A. S. 2007 Single-particle tracking of membrane protein diffusion in a potential: simulation, detection, and application to confined diffusion of CFTR cl-channels. Biophys. J. 93 (3), 10791088.10.1529/biophysj.106.102244Google Scholar
Johnson, E. M., Berk, D. A., Jain, R. K. & Deen, W. M. 1996 Hindered diffusion in agarose gels: test of effective medium model. Biophys. J. 70 (2), 10171023.10.1016/S0006-3495(96)79645-5Google Scholar
Lin, L. C.-L. & Brown, F. L. H. 2004 Dynamics of pinned membranes with application to protein diffusion on the surface of red blood cells. Biophys. J. 86 (2), 764780.10.1016/S0006-3495(04)74153-3Google Scholar
Lodish, H., Berk, A., Kaiser, C. A., Scott, M. P., Bretscher, A., Ploegh, H. & Matsudaira, P. 2008 Molecular Cell Biology. W. H. Freeman.Google Scholar
Medina-Noyola, M. 1988 Long-time self-diffusion in concentrated colloidal dispersions. Phys. Rev. Lett. 60 (26), 27052708.10.1103/PhysRevLett.60.2705Google Scholar
Nicolau, D. V., Hancock, J. F. & Burrage, K. 2007 Sources of anomalous diffusion on cell membranes: a Monte Carlo study. Biophys. J. 92 (6), 19751987.10.1529/biophysj.105.076869Google Scholar
Niehaus, A. M. S., Vlachos, D. G., Edwards, J. S., Plechac, P. & Tribe, R. 2008 Microscopic simulation of membrane molecule diffusion on corralled membrane surfaces. Biophys. J. 94 (5), 15511564.10.1529/biophysj.107.106484Google Scholar
Niemelä, P. S., Miettinen, M. S., Monticelli, L., Hammaren, H., Bjelkmar, P., Murtola, T., Lindahl, E. & Vattulainen, I. 2010 Membrane proteins diffuse as dynamic complexes with lipids. J. Am. Chem. Soc. 132 (22), 75747575.10.1021/ja101481bGoogle Scholar
Niemelä, P. S., Ollila, S., Hyvönen, M. T., Karttunen, M. & Vattulainen, I. 2007 Assessing the nature of lipid raft membranes. PLoS Comput. Biol. 3 (2), e34.10.1371/journal.pcbi.0030034Google Scholar
Oppenheimer, N. & Diamant, H. 2009 Correlated diffusion of membrane proteins and their effect on membrane viscosity. Biophys. J. 96 (8), 30413049.10.1016/j.bpj.2009.01.020Google Scholar
Oppenheimer, N. & Diamant, H. 2010 Correlated dynamics of inclusions in a supported membrane. Phys. Rev. E 82 (4), 041912.Google Scholar
Oppenheimer, N. & Diamant, H. 2011 In-plane dynamics of membranes with immobile inclusions. Phys. Rev. Lett. 107 (25), 258102.10.1103/PhysRevLett.107.258102Google Scholar
Phillips, R. J., Deen, W. M. & Brady, J. F. 1989 Hindered transport of spherical macromolecules in fibrous membranes and gels. AIChE J. 35 (11), 17611769.10.1002/aic.690351102Google Scholar
Phillips, R. J. 2000 A hydrodynamic model for hindered diffusion of proteins and micelles in hydrogels. Biophys. J. 79 (6), 33503354.10.1016/S0006-3495(00)76566-0Google Scholar
Przybylo, M., Skora, J., Humpolíková, J., Benda, A., Zan, A. & Hof, M. 2006 Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir 22 (22), 90969099.10.1021/la061934pGoogle Scholar
Ratto, T. V. & Longo, M. L. 2003 Anomalous subdiffusion in heterogeneous lipid bilayers. Langmuir 19 (5), 17881793.10.1021/la0261803Google Scholar
Saffman, P. G. 1976 Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73 (04), 593602.10.1017/S0022112076001511Google Scholar
Saffman, P. G. & Delbrück, M. 1975 Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72 (8), 31113113.10.1073/pnas.72.8.3111Google Scholar
Sangani, A. S. & Behl, S. 1989 The planar singular solutions of Stokes and Laplace equations and their application to transport processes near porous surfaces. Phys. Fluids A 1 (1), 2137.10.1063/1.857544Google Scholar
Sangani, A. S. & Yao, C. 1988 Transport processes in random arrays of cylinders. II. Viscous flow. Phys. Fluids 31 (9), 24352444.10.1063/1.866596Google Scholar
Sangani, A. S., Zhang, D. Z. & Prosperetti, A. 1991 The added mass, basset, and viscous drag coefficients in nondilute bubbly liquids undergoing small-amplitude oscillatory motion. Phys. Fluids A 3 (12), 29552970.10.1063/1.857838Google Scholar
Saxton, M. J. 1987 Lateral diffusion in an archipelago. The effect of mobile obstacles. Biophys. J. 52 (6), 989997.10.1016/S0006-3495(87)83291-5Google Scholar
Saxton, M. J. 1990 Lateral diffusion in a mixture of mobile and immobile particles. A Monte Carlo study. Biophys. J. 58 (5), 13031306.10.1016/S0006-3495(90)82470-XGoogle Scholar
Saxton, M. J. 1994 Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys. J. 66 (2), 394401.10.1016/S0006-3495(94)80789-1Google Scholar
Schütz, G. J., Schindler, H. & Schmidt, T. 1997 Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73 (2), 10731080.10.1016/S0006-3495(97)78139-6Google Scholar
Skaug, M. J., Faller, R. & Longo, M. L. 2011 Correlating anomalous diffusion with lipid bilayer membrane structure using single molecule tracking and atomic force microscopy. J. Chem. Phys. 134 (21), 06B602.Google Scholar
Stauffer, D. & Aharony, A. 1994 Introduction to Percolation Theory. CRC Press.Google Scholar
Sung, B. J. & Yethiraj, A. 2006 Lateral diffusion and percolation in membranes. Phys. Rev. Lett. 96 (22), 228103.10.1103/PhysRevLett.96.228103Google Scholar
Sung, B. J. & Yethiraj, A. 2008 Lateral diffusion of proteins in the plasma membrane: Spatial tessellation and percolation theory. J. Phys. Chem. B 112 (1), 143149.10.1021/jp0772068Google Scholar
Tomishige, M., Sako, Y. & Kusumi, A. 1998 Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J. Cell Biol. 142 (4), 9891000.10.1083/jcb.142.4.989Google Scholar
Weigel, A. V., Simon, B., Tamkun, M. M. & Krapf, D. 2011 Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc. Natl Acad. Sci. USA 108 (16), 64386443.10.1073/pnas.1016325108Google Scholar
Zhou, H.-X. 2009 Crowding effects of membrane proteins. J. Phys. Chem. B 113 (23), 79958005.10.1021/jp8107446Google Scholar
Zimmerman, R. W., Chen, D.-W. & Cook, N. G. W. 1992 The effect of contact area on the permeability of fractures. J. Hydrol. 139 (1–4), 7996.10.1016/0022-1694(92)90196-3Google Scholar