Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T20:14:09.928Z Has data issue: false hasContentIssue false

Collective effect of thermal plumes on temperature fluctuations in a closed Rayleigh–Bénard convection cell

Published online by Cambridge University Press:  14 January 2022

Yin Wang
Affiliation:
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
Yongze Wei
Affiliation:
School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, PR China
Penger Tong
Affiliation:
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Xiaozhou He*
Affiliation:
School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, PR China
*
Email address for correspondence: [email protected]

Abstract

We report a systematic study of the collective effect of thermal plumes on the probability density function (p.d.f.) $P(\delta T)$ of temperature fluctuations $\delta T(t)$ in turbulent Rayleigh–Bénard convection. By decomposing $\delta T(t)$ into four basic fluctuation modes associated with single and multiple warm and cold plumes and a turbulent background, we derive an analytic form of $P(\delta T)$ based on the convolutions of the five independent modes. To test the derived form of $P(\delta T)$ in the multiple-plume regions, where the thermal plumes are heavily populated, we conduct time series measurements of temperature fluctuations in two convection cells; one is a vertical thin disk and the other is an upright cylinder of aspect ratio unity. For a given normalized position in most regions of the convection cell, all of the measured p.d.f.s $P(\delta T)$ for different Rayleigh numbers fall onto a single master curve, once $\delta T$ is normalized by its root-mean-square (r.m.s.) value $\sigma _T$. It is found that the measured $P(\delta T/\sigma _T)$ at different locations along the symmetric horizontal and vertical axes of the convection cells can all be well described by the derived form of $P(\delta T/\sigma _T)$. The fitted values of the parameters associated with the number of plumes in multiple plume clusters and their relative strengths and degrees of intermittency are closely linked to the spatial distribution of thermal plumes and local dynamics of the large-scale circulation in a closed convection cell. Our work thus provides a unified theoretical approach for understanding scalar p.d.f.s in a turbulent field, which is very useful not only for the present study but also for the study of many turbulent mixing problems of practical interest.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G., Brown, E. & Nikolaenko, A. 2006 Search for slow transients, and the effect of imperfect vertical alignment, in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 557, 347367.CrossRefGoogle Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Aksoy, H. 2000 Use of gamma distribution in hydrological analysis. Turk. J. Engng Environ. Sci. 24, 419428.Google Scholar
Belmonte, A., Tilgner, A. & Libchaber, A. 1994 Temperature and velocity boundary layers in turbulent convection. Phys. Rev. E 50, 269279.CrossRefGoogle ScholarPubMed
Boland, P.J. 2007 Statistical and Probabilistic Methods in Actuarial Science. CRC Press.CrossRefGoogle Scholar
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Cattaneo, F., Emonet, T. & Weiss, N. 2003 On the interaction between convection and magnetic fields. Astrophys. J. 588, 11871198.CrossRefGoogle Scholar
Chillá, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.CrossRefGoogle ScholarPubMed
Chowdhuri, S., Iacobello, G. & Banerjee, T. 2021 Visibility network analysis of large-scale intermittency in convective surface layer turbulence. J. Fluid Mech. 925, A38.CrossRefGoogle Scholar
Chu, C.R., Parlange, M.B., Katul, G.G. & Albertson, J.D. 1996 Probability density functions of turbulent velocity and temperature in the atmospheric surface layer. Water Resour. Res. 32, 16811688.CrossRefGoogle Scholar
Dimotakis, P.E. 2005 Tubulent mixing. Annu. Rev. Fluid Mech. 37, 329356.CrossRefGoogle Scholar
Du, Y.-B. & Tong, P. 2000 Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid Mech. 407, 5784.CrossRefGoogle Scholar
Du, Y.-B. & Tong, P. 2001 Temperature fluctuations in a convection cell with rough upper and lower surfaces. Phys. Rev. E 63, 046303.CrossRefGoogle Scholar
Duplat, J. & Villermaux, E. 2008 Mixing by random stirring in confined mixtures. J. Fluid Mech. 617, 5186.CrossRefGoogle Scholar
Friedman, N., Cai, L. & Xie, X. 2006 Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett. 97, 168302.CrossRefGoogle ScholarPubMed
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large-scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92, 194502.CrossRefGoogle Scholar
Gollub, J.P., Clarke, J., Gharib, M., Lane, B. & Mesquita, O.N. 1991 Fluctuations and transport in a stirred fluid with a mean gradient. Phys. Rev. Lett. 67, 35073510.CrossRefGoogle Scholar
He, X.-Z., Ching, E.S.C. & Tong, P. 2011 Locally averaged thermal dissipation rate in turbulent thermal convection: a decomposition into contributions from different temperature gradient components. Phys. Fluids 23, 025106.CrossRefGoogle Scholar
He, X.-Z. & Tong, P. 2009 Measurements of the thermal dissipation field in turbulent Rayleigh–Bénard convection. Phys. Rev. E 79, 026306.CrossRefGoogle ScholarPubMed
He, X.-Z., Tong, P. & Xia, K.-Q. 2007 Measured thermal dissipation field in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 144501.CrossRefGoogle ScholarPubMed
He, X.-Z., Wang, Y. & Tong, P. 2018 Dynamic heterogeneity and conditional statistics of non-Gaussian temperature fluctuations in turbulent thermal convection. Phys. Rev. Fluids 3, 052401.CrossRefGoogle Scholar
Hogg, R.V. & Craig, A.T. 1978 Introduction to Mathematical Statistics, 4th edn. Macmillan.Google Scholar
Kadanoff, L.P. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54 (8), 3439.CrossRefGoogle Scholar
Krishnamurti, R. & Howard, L.N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl Acad. Sci. USA 78, 19811985.CrossRefGoogle ScholarPubMed
Le Borgne, T., Huck, P.D., Dentz, M. & Villermaux, E. 2017 Scalar gradients in stirred mixtures and the deconstruction of random fields. J. Fluid Mech. 812, 578610.CrossRefGoogle Scholar
Liu, L., Hu, F. & Cheng, X.L. 2011 Probability density functions of turbulent velocity and temperature fluctuations in the unstable atmospheric surface layer. J. Geophys. Res. Atmos. 116, D12117.CrossRefGoogle Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
Niemela, J.J., Skrbek, L., Sreenivasan, K.R. & Donnelly, R.J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.CrossRefGoogle ScholarPubMed
Ottino, J.M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press.Google Scholar
Paul, E.L., Atiemo-Obeng, V.A. & Kresta, S.M. 2004 Handbook of Industrial Mixing: Science and Practice. John Wiley & Sons.Google Scholar
Procaccia, I., Ching, E., Constantin, P., Kadanoff, L.P., Libchaber, A. & Wu, X.-Z. 1991 Transitions in convective turbulence: the role of thermal plumes. Phys. Rev. A 44, 80918102.CrossRefGoogle ScholarPubMed
Qiu, X.-L. & Tong, P. 2001 Large-scale velocity structures in turbulent thermal convection. Phys. Rev. E 64, 036304.CrossRefGoogle ScholarPubMed
Rahmstorf, S. 2000 The thermohaline ocean circulation: a system with dangerous thresholds? Clim. Change 46, 247256.CrossRefGoogle Scholar
Sano, M., Wu, X.-Z. & Libchaber, A. 1989 Turbulence in helium-gas free convection. Phys. Rev. A 40, 64216430.CrossRefGoogle ScholarPubMed
Sidorenkov, N.S. 2009 The Interaction Between Earth's Rotation and Geophysical Processes. Wiley-VCH.CrossRefGoogle Scholar
Siggia, E.D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.CrossRefGoogle Scholar
Song, H., Villermaux, E. & Tong, P. 2011 Coherent oscillations of turbulent Rayleigh–Bénard convection in a thin vertical disk. Phys. Rev. Lett. 106, 184504.CrossRefGoogle Scholar
Sreenivasan, K.R., Ramshankar, R. & Meneveau, C. 1989 Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421, 79108.Google Scholar
Sun, C., Xia, K.-Q. & Tong, P. 2005 Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72, 026302.CrossRefGoogle Scholar
Villermaux, E. 2012 On dissipation in stirred mixtures. Adv. Appl. Mech. 45, 91107.CrossRefGoogle Scholar
Villermaux, E. & Duplat, J. 2003 Mixing as an aggregation process. Phys. Rev. Lett. 91, 184501.CrossRefGoogle ScholarPubMed
Wang, Y., He, X.-Z. & Tong, P. 2016 Boundary layer fluctuations and their effects on mean and variance temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 1, 082301.CrossRefGoogle Scholar
Wang, Y., He, X.-Z. & Tong, P. 2019 Turbulent temperature fluctuations in a closed Rayleigh–Bénard convection cell. J. Fluid Mech. 874, 263284.CrossRefGoogle Scholar
Wang, Y., Lai, P.-Y., Song, H. & Tong, P. 2018 a Mechanism of large-scale flow reversals in turbulent thermal convection. Sci. Adv. 4, eaat7480.CrossRefGoogle ScholarPubMed
Wang, Y., Xu, W., He, X.-Z., Yik, H.-F., Wang, X.-P., Schumacher, J. & Tong, P. 2018 b Boundary layer fluctuations in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 840, 408431.CrossRefGoogle Scholar
Wei, P. 2021 The persistence of large-scale circulation in Rayleigh–Bénard convection. J. Fluid Mech. 924, A28.CrossRefGoogle Scholar
Wei, P. & Ahlers, G. 2016 On the nature of fluctuations in turbulent Rayleigh–Bénard convection at large Prandtl numbers. J. Fluid Mech. 802, 203244.CrossRefGoogle Scholar
Wu, X.-Z. & Libchaber, A. 1992 Scaling relations in thermal turbulence: the aspect-ratio dependence. Phys. Rev. A 45, 842845.CrossRefGoogle ScholarPubMed
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.CrossRefGoogle Scholar
Xi, H.-D., Zhou, S.-Q., Zhou, Q., Chan, T.-S. & Xia, K.-Q. 2009 Origin of the temperature oscillation in turbulent thermal convection. Phys. Rev. Lett. 102, 044503.CrossRefGoogle ScholarPubMed
Xu, W., Wang, Y., He, X.-Z., Wang, X.-P., Schumacher, J., Huang, S.-D. & Tong, P. 2021 Mean velocity and temperature profiles in turbulent Rayleigh–Bénard convection at low Prandtl numbers. J. Fluid Mech. 918, A1.CrossRefGoogle Scholar
Zhou, S.-Q. & Xia, K.-Q. 2002 Plume statistics in thermal turbulence: mixing of an active scalar. Phys. Rev. Lett. 89, 184502.CrossRefGoogle ScholarPubMed
Zhou, Q. & Xia, K.-Q. 2013 Thermal boundary layer structure in turbulent Rayleigh–Bénard convection in a rectangular cell. J. Fluid Mech. 721, 199224.CrossRefGoogle Scholar
Zocchi, G., Moses, E. & Libchaber, A. 1990 Coherent structures in turbulent convection, an experimental study. Physica A 166, 387407.CrossRefGoogle Scholar