Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T06:09:58.092Z Has data issue: false hasContentIssue false

Collapse and winding of an asymmetric annulus of vorticity

Published online by Cambridge University Press:  26 April 2006

A. J. Peurrung
Affiliation:
Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
J. Notte
Affiliation:
Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
J. Fajans
Affiliation:
Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA

Abstract

The dynamics of an asymmetric annulus of vorticity in an incompressible, inviscid twodimensional fluid are experimentally studied using a pure electron plasma. A strict fluid analogy requires that the plasma system behave like an ideal fluid in a frictionless cylindrical container. For certain parameters the asymmetric annulus undergoes a complex evolution which is quite different from that of a symmetric annulus. During the first ‘active’, phase the symmetries grow until the annulus collapses, leaving a large vortex at the device centre. In the second, ‘passive’, phase the remainder of the annulus winds around this central vortex into an ever tighter spiral. Finally, slow shear instabilities destroy the structure of the highly evolved spiral.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balint, J.-J. & Wallace, J. M. 1989 The statistical properties of the vorticity field of a two-stream mixing layer. In Advances in Turbulence 2 (ed. H. H. Fernholz & H. E. Fiedler), pp. 7478. Springer.
Batchelor, G. K. 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids, Suppl.II 12, 233239.Google Scholar
Brachet, M. E., Meneguzzi, M., Politano, H. & Sulem, P. L. 1988 The dynamics of freely decaying two-dimensional turbulence. J. Fluid Mech. 194, 333349.Google Scholar
Busse, F. H. 1968 Shear flow instabilities in rotating systems. J. Fluid Mech. 33, 577589.Google Scholar
Driscoll, C. F. 1990 Observation of an unstable l = 1 diocotron mode on a hollow electron column. Phys. Rev. Lett. 64, 645648.Google Scholar
Driscoll, C. F. & Fine, K. S. 1990 Experiments on vortex dynamics in pure electron plasma. Phys. Fluids B 2, 13591366.Google Scholar
Driscoll, C. F., Malmberg, J. H., Fine, K. S., Smith, R. A., Huang, X.-P. & Gould, R. W. 1989 Growth and decay of turbulent vortex structures in pure electron plasmas. In Plasma Physics and Controlled Nuclear Fusion Research 1988, Vol. 3, pp. 507514. IAEA.
Dritschel, D. G. 1989 On the stabilization of a two-dimensional vortex strip by adverse shear. J. Fluid Mech. 206, 193221.Google Scholar
Dritschel, D. G., Haynes, P. H., Juckes, M. N. & Shepherd, T. G. 1991 The stability of a twodimensional vorticity filament under uniform strain. J. Fluid Mech. 230, 647665.Google Scholar
Epstein, B. G. & Poukey, J. W. 1980 Analytic study of azimuthal symmetries in relativistic e-beams. Phys. Fluids 23, 15961602.Google Scholar
Fine, K. S., Driscoll, C. F., Malmberg, J. H. & Mitchell, T. B. 1991 Measurements of symmetric vortex merger. Phys. Rev. Lett. 67, 588591.Google Scholar
Lesieur, M., Staquet, C., Le Roy, P. & Comte, P 1988 The mixing layer and its coherence examined from the point of view of two-dimensional turbulence. J. Fluid Mech. 192, 511534.Google Scholar
Levy, R. H. 1965 Diocotron instability in a cylindrical geometry. Phys. Fluids 8, 12881295.Google Scholar
Levy, R. H., Daugherty, J. D. & Buneman, O. 1969 Ion resonance instability in grossly nonneutral plasmas. Phys. Fluids 12, 26162629.Google Scholar
Lin, C. C. 1966 Theory of Hydro-Dynamic Stability. Cambridge University Press.
Malmberg, J. H., Driscoll, C. F., Beck, B., Eggleston, D. L., Fajans, J., Fine, K., Huang, X.-P. & Hyatt, A. W. 1988 Experiments with pure electron plasmas. In Non-neutral Plasma Physics (ed. C. W. Roberson & C. F. Driscoll), pp. 2871. American Institute of Physics.
Matthaeus, W., Stribling, W. T., Martinez, D., Oughton, S. & Montgomery, D. 1991 Selective decay and coherent vortices in two-dimensional turbulence. Phys. Rev. Lett. 66, 27312734.Google Scholar
Michalke, A. & Timme, A. 1967 On the inviscid instability of certain two-dimensional vortex-type flows. J. Fluid Mech. 29, 647666.Google Scholar
Peurrung, A. J. 1992 Imaging of instabilities in a nonneutral plasma. PhD thesis, U. C. Berkeley.
Peurrung, A. J. & Fajans, J. 1993a Experimental dynamics of an annulus of vorticity in a pure electron plasma. Phys. Fluids A 5, 493499.Google Scholar
Peurrung, A. J. & Fajans, J. 1993b A pulsed, microchannel plate-based nonneutral plasma imaging system. Rev. Sci. Instrum. 64, 5255.Google Scholar
Peurrung, A. J., Notte, J. & Fajans, J. 1992 Observation of the ion resonance instability. Phys. Rev. Lett. 70, 295298.Google Scholar
Poukey, J. W. & Freeman, J. R. 1981 Diocotron instability in asymmetric beams. Phys. Fluids 24, 23762377.Google Scholar
Rosenthal, G., Dimonte, G. & Wong, A. Y. 1987 Stabilization of diocotron instability in an annular plasma. Phys. Fluids 30, 32573261.Google Scholar
Rotunno, R. 1978 A note on the stability of a cylindrical vortex sheet. J. Fluid Mech. 87, 761771.Google Scholar
Stern, M. E. 1989 Evolution of locally unstable shear flow near a wall or a coast. J. Fluid Mech. 198, 7999.Google Scholar
Ward, N. B. 1972 The exploration of certain features of tornado dynamics using a laboratory model. J. Atmos. Sci. 29, 11941208.Google Scholar
Waugh, D. W. & Dritschel, D. G. 1991 The stability of filamentary vorticity in two-dimensional geophysical vortex-dynamics models. J. Fluid Mech. 231, 575598.Google Scholar
Webster, H. F. 1955 Breakup of hollow beams. J. Appl. Phys. 26, 13861387.Google Scholar
Weske, J. R. & Rankin, T. M. 1963 Generation of secondary motions in the field of a vortex. Phys. Fluids 6, 13971402.Google Scholar
White, W. D., Malmberg, J. H. & Driscoll, C. F. 1982 Resistive wall destabilization of diocotron waves. Phys. Rev. Lett. 49, 18221826.Google Scholar