Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T09:20:53.275Z Has data issue: false hasContentIssue false

Coherent Lagrangian vortices: the black holes of turbulence

Published online by Cambridge University Press:  03 September 2013

G. Haller
Affiliation:
Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland
F. J. Beron-Vera*
Affiliation:
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
*
Email address for correspondence: [email protected]

Abstract

We introduce a simple variational principle for coherent material vortices in two-dimensional turbulence. Vortex boundaries are sought as closed stationary curves of the averaged Lagrangian strain. Solutions to this problem turn out to be mathematically equivalent to photon spheres around black holes in cosmology. The fluidic photon spheres satisfy explicit differential equations whose outermost limit cycles are optimal Lagrangian vortex boundaries. As an application, we uncover super-coherent material eddies in the South Atlantic, which yield specific Lagrangian transport estimates for Agulhas rings.

Type
Rapids
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, V. I. 1973 Ordinary Differential Equations. Massachusetts Institute of Technology.Google Scholar
Beal, L. M., De Ruijter, W. P. M., Biastoch, A., Zahn, R. & SCOR/WCRP/IAPSO Working Group, 2011 On the role of the Agulhas system in ocean circulation and climate. Nature 472, 429436.Google Scholar
Beem, J. K., Ehrlich, P. L. & Kevin, L. E. 1996 Global Lorentzian Geometry. CRC Press.Google Scholar
Beron-Vera, F. J., Olascoaga, M. J. & Goni, G. J. 2008 Oceanic mesoscale vortices as revealed by Lagrangian coherent structures. Geophys. Res. Lett. 35, L12603.Google Scholar
Beron-Vera, F. J., Wang, Y., Olascoaga, M. J., Goni, G. J. & Haller, G. 2013 Objective detection of oceanic eddies and the Agulhas leakage. J. Phys. Oceanogr. 43, 14261438.Google Scholar
Chelton, D. B., Schlax, M. G. & Samelson, R. M. 2011 Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167216.Google Scholar
Denman, K. L. & Gargett, A. E. 1983 Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnol. Oceanogr. 28, 801815.CrossRefGoogle Scholar
Froyland, G., Horenkamp, C., Rossi, V., Santitissadeekorn, N. & Gupta, A. S. 2012 Three-dimensional characterization and tracking of an Agulhas ring. Ocean Model. 52–53, 6975.Google Scholar
Goni, G. J., Garzoli, S. L., Roubicek, A. J., Olson, D. B. & Brown, O. B. 1997 Agulhas ring dynamics from TOPEX/Poseidon satellite altimeter data. J. Mar. Res. 55, 861883.Google Scholar
Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 126.Google Scholar
Haller, G. & Sapsis, T. 2008 Where do inertial particles go in fluid flows? Physica D 237, 573583.Google Scholar
Hawking, S. & Penrose, R. 1996 The Nature of Space and Time. Princeton University Press.Google Scholar
Jeong, J. & Hussain, F. 1985 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Provenzale, A. 1999 Transport by coherent barotropic vortices. Annu. Rev. Fluid Mech. 31, 5593.Google Scholar
Truesdell, C. & Noll, W. 2004 The Nonlinear Field Theories of Mechanics. Springer.Google Scholar
van Aken, H. M., van Veldhovena, A. K., Vetha, C., de Ruijterb, W. P. M., van Leeuwenb, P. J., Drijfhoutc, S. S., Whittled, C. P. & Rouaultd, M. 2003 Observations of a young Agulhas ring, Astrid, during MARE in March 2000 . Deep-Sea Res. II 50, 167195.Google Scholar
Supplementary material: PDF

Haller and Beron-Vera supplementary material

Appendix

Download Haller and Beron-Vera supplementary material(PDF)
PDF 374.7 KB