Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T15:51:03.409Z Has data issue: false hasContentIssue false

The clustering morphology of freely rising deformable bubbles

Published online by Cambridge University Press:  18 March 2013

Yoshiyuki Tagawa*
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, 1848588, Koganei-city, Tokyo, Japan
Ivo Roghair
Affiliation:
Multiphase Reactors Group, Department of Chemical Engineering and Chemistry, J. M. Burgers Centre for Fluid Dynamics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
Vivek N. Prakash
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
Martin van Sint Annaland
Affiliation:
Multiphase Reactors Group, Department of Chemical Engineering and Chemistry, J. M. Burgers Centre for Fluid Dynamics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
Hans Kuipers
Affiliation:
Multiphase Reactors Group, Department of Chemical Engineering and Chemistry, J. M. Burgers Centre for Fluid Dynamics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
Chao Sun*
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
Detlef Lohse*
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
*
Email addresses for correspondence: [email protected], [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected], [email protected]

Abstract

We investigate the clustering morphology of a swarm of freely rising deformable bubbles. A three-dimensional Voronoï analysis enables us to distinguish quantitatively between two typical preferential clustering configurations: a regular lattice arrangement and irregular clustering. The bubble data are obtained from direct numerical simulations using the front-tracking method. It is found that the bubble deformation, represented by the aspect ratio $\chi $, plays a significant role in determining which type of clustering is realized: nearly spherical bubbles form a regular lattice arrangement, while more deformed bubbles show irregular clustering. Remarkably, this criterion for the clustering morphology holds for different diameters of the bubbles, surface tensions and viscosities of the liquid in the studied parameter regime. The mechanism of this clustering behaviour is most likely connected to the amount of vorticity generated at the bubble surfaces.

Type
Rapids
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beetstra, R. 2005 Drag force in random arrays of mono- and bidisperse spheres. PhD thesis, University of Twente.Google Scholar
Bunner, B. & Tryggvason, G. 2002 Dynamics of homogeneous bubbly flows. Part 2. Velocity fluctuations. J. Fluid Mech. 466, 1752.Google Scholar
Bunner, B. & Tryggvason, G. 2003 Effect of bubble deformation on the properties of bubbly flows. J. Fluid Mech. 495, 77118.Google Scholar
Calzavarini, E., Kerscher, M., Lohse, D. & Toschi, F. 2008 Dimensionality and morphology of particle and bubble clusters in turbulent flow. J. Fluid Mech. 607, 1324.Google Scholar
Cartellier, A., Andreotti, M. & Sechet, P. 2009 Induced agitation in homogeneous bubbly flows at moderate particle Reynolds number. Phys. Rev. E 80, 065301.Google Scholar
Cartellier, A. & Rivière, N. 2001 Bubble-induced agitation and microstructure in uniform bubbly flows at small to moderate particle Reynolds numbers. Phys. Fluids 13, 21652181.Google Scholar
Deen, N. G., Mudde, R. F., Kuipers, J. A. M., Zehner, P. & Kraume, M. 2000 Ullmanns encyclopedia of industrial chemistry, chapter bubble columns., Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
Deen, N. G., van Sint Annaland, M. & Kuipers, J. A. M. 2004 Multi-scale modelling of dispersed gas–liquid two-phase flow. Chem. Engng Sci. 59, 18531861.Google Scholar
Dijkhuizen, W., Roghair, I., van Sint Annaland, M. & Kuipers, J. A. M. 2010 DNS of gas bubbles behaviour using an improved 3D front tracking model – drag force on isolated bubbles and comparison with experiments. Chem. Engng Sci. 65, 14271437.CrossRefGoogle Scholar
Ferenc, J. S. & Néda, Z. 2007 On the size distribution of Poisson Voronoi cells. Physica A: Stat. Mech. Appl. 385, 518526.Google Scholar
Fiabane, L., Zimmermann, R., Volk, R., Pinton, J.-F. & Bourgoin, M. 2012 Clustering of finite-size particles in turbulence. Phys. Rev. E 86, 035301.Google Scholar
Frenkel, D. & Smit, B. 2002 Understanding Molecular Simulation: From Algorithms to Applications. Academic Press.Google Scholar
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.Google Scholar
Martínez Mercado, J., Chehata-Gómez, D., van Gils, D. P. M., Sun, C. & Lohse, D. 2010 On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650, 287306.Google Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22, 103304.CrossRefGoogle Scholar
Okabe, A., Boots, B., Sugihara, K. & Chiu, S. N. 2000 Spatial Tessellations. Wiley.Google Scholar
Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.Google Scholar
Roghair, I., van Sint Annaland, M. & Kuipers, J. A. M. 2012b Drag force and clustering in bubble swarms, AIChE J. (early view) doi:10.1002/aic.13949.Google Scholar
Roghair, I., Lau, Y. M., Deen, N. G., Slagter, H. M., Baltussen, M. W., van Sint Annaland, M. & Kuipers, J. A. M. 2011a On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers. Chem. Engng Sci. 66, 32043211.Google Scholar
Roghair, I., Martínez Mercado, J., van Sint Annaland, M., Kuipers, J. A. M., Sun, C. & Lohse, D. 2011 Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations vs. experiments. Intl J. Multiphase Flow 37, 10931098.CrossRefGoogle Scholar
Tagawa, Y., Mercado, J. M., Prakash, V. N., Calzavarini, E., Sun, C. & Lohse, D. 2012 Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence. J. Fluid Mech. 693, 201215.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
Unverdi, S. O. & Tryggvason, G. 1992 A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 2537.Google Scholar
Yin, X. & Koch, D. L. 2008 Lattice–Boltzmann simulation of finite Reynolds number buoyancy-driven bubbly flows in periodic and wall-bounded domains. Phys. Fluids 20, 103304.Google Scholar
Zenit, R., Koch, D. L. & Sangani, A. S. 2001 Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J. Fluid Mech. 429, 307342.CrossRefGoogle Scholar