Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Carnevale, G. F.
Kloosterziel, R. C.
Orlandi, P.
and
Zhou, Y.
2003.
Nonlinear Processes in Geophysical Fluid Dynamics.
p.
325.
Cox, S. M.
Matthews, P. C.
and
Pollicott, S. L.
2004.
Swift-Hohenberg model for magnetoconvection.
Physical Review E,
Vol. 69,
Issue. 6,
Tagare, S.G.
Ramana Murthy, M.V.
and
Rameshwar, Y.
2007.
Nonlinear thermohaline convection in rotating fluids.
International Journal of Heat and Mass Transfer,
Vol. 50,
Issue. 15-16,
p.
3122.
KLOOSTERZIEL, R. C.
and
CARNEVALE, G. F.
2008.
Vertical scale selection in inertial instability.
Journal of Fluid Mechanics,
Vol. 594,
Issue. ,
p.
249.
Malashetty, M.S.
and
Swamy, Mahantesh
2008.
Effect of thermal modulation on the onset of convection in a rotating fluid layer.
International Journal of Heat and Mass Transfer,
Vol. 51,
Issue. 11-12,
p.
2814.
Shivakumara, I. S.
Savitha, M. N.
Chavaraddi, Krishna B.
and
Devaraju, N.
2009.
Bifurcation analysis for thermal convection in a rotating porous layer.
Meccanica,
Vol. 44,
Issue. 3,
p.
225.
Shivakumara, I.S.
Ng, Chiu-On
and
Nagashree, M.S.
2011.
The onset of electrothermoconvection in a rotating Brinkman porous layer.
International Journal of Engineering Science,
Vol. 49,
Issue. 7,
p.
646.
Gelfgat, A. Yu.
2011.
Destabilization of free convection by weak rotation.
Journal of Fluid Mechanics,
Vol. 685,
Issue. ,
p.
377.
Shivakumara, I. S.
Sureshkumar, S.
and
Devaraju, N.
2011.
Coriolis effect on thermal convection in a couple-stress fluid-saturated rotating rigid porous layer.
Archive of Applied Mechanics,
Vol. 81,
Issue. 4,
p.
513.
Shivakumara, I.S.
Lee, Jinho
Vajravelu, K.
and
Akkanagamma, M.
2012.
Electrothermal convection in a rotating dielectric fluid layer: Effect of velocity and temperature boundary conditions.
International Journal of Heat and Mass Transfer,
Vol. 55,
Issue. 11-12,
p.
2984.
Prosperetti, Andrea
2012.
The effect of rotation on the Rayleigh-Bénard stability threshold.
Physics of Fluids,
Vol. 24,
Issue. 11,
Dawes, J. H. P.
2013.
Comment on “The effect of rotation on the Rayleigh–Bénard stability threshold” [Phys. Fluids 24, 114101 (2012)].
Physics of Fluids,
Vol. 25,
Issue. 5,
Yadav, Dhananjay
Bhargava, R.
and
Agrawal, G.S.
2013.
Numerical solution of a thermal instability problem in a rotating nanofluid layer.
International Journal of Heat and Mass Transfer,
Vol. 63,
Issue. ,
p.
313.
Shivakumara, I.S.
Akkanagamma, M.
and
Ng, Chiu-On
2013.
Electrohydrodynamic instability of a rotating couple stress dielectric fluid layer.
International Journal of Heat and Mass Transfer,
Vol. 62,
Issue. ,
p.
761.
Bhadauria, B.S.
and
Kiran, Palle
2014.
Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source.
Ain Shams Engineering Journal,
Vol. 5,
Issue. 4,
p.
1287.
Curbelo, Jezabel
Lopez, Juan M.
Mancho, Ana M.
and
Marques, Francisco
2014.
Confined rotating convection with large Prandtl number: Centrifugal effects on wall modes.
Physical Review E,
Vol. 89,
Issue. 1,
Singh, Jitender
and
Singh, S S
2014.
Instability in temperature modulated rotating Rayleigh–Bénard convection.
Fluid Dynamics Research,
Vol. 46,
Issue. 1,
p.
015504.
Naveen Kumar, S. B.
Shivakumara, I. S.
and
Shankar, B. M.
2019.
Exploration of Coriolis Force on the Linear Stability of Couple Stress Fluid Flow Induced by Double Diffusive Convection.
Journal of Heat Transfer,
Vol. 141,
Issue. 12,
Fantini, M.
2019.
The atmospheric Rayleigh-Bénard problem on the f-plane.
Physics of Fluids,
Vol. 31,
Issue. 10,
Kanchana, C.
Suthar, Om P.
and
Siddheshwar, P. G.
2020.
A Study of Rayleigh-Bénard-Taylor Convection in Very-Shallow, Shallow, Square and Tall Enclosures.
International Journal of Applied and Computational Mathematics,
Vol. 6,
Issue. 3,